設(shè)實(shí)數(shù)x,y滿足
x+y-3≤0
y-
1
2
x≥0
x-1≥0
,則u=
y
x
-
x
y
的取值范圍為
 
分析:由線性約束條件畫出可行域,然后求出目標(biāo)函數(shù)
y
x
的最值,最后求出u=
y
x
-
x
y
的取值范圍.
解答:精英家教網(wǎng)解:畫出可行域,得在直線x+y=3與直線x=1的交點(diǎn)A(1,2)處,
目標(biāo)函數(shù)z=
y
x
最大值為 2,當(dāng)OP與直線y=
1
2
x平行時(shí),
y
x
最小,最小值為:
1
2

u=
y
x
-
x
y
是關(guān)于
y
x
的增函數(shù),其取值范圍為[-
3
2
,
3
2
]

故答案為:[-
3
2
,
3
2
]
點(diǎn)評(píng):本題只是直接考查線性規(guī)劃問題,是一道較為簡單的題.近年來高考線性規(guī)劃問題高考數(shù)學(xué)考試的熱點(diǎn),數(shù)形結(jié)合是數(shù)學(xué)思想的重要手段之一,是連接代數(shù)和幾何的重要方法.隨著要求數(shù)學(xué)知識(shí)從書本到實(shí)際生活的呼聲不斷升高,線性規(guī)劃這一類新型數(shù)學(xué)應(yīng)用問題要引起重視.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足 
x-y-2≤0
x+2y-5≥0
y-2≤0
,則u=
x2+y2
xy
的取值范圍是(  )
A、[2,
5
2
]
B、[
5
2
,
10
3
]
C、[2,
10
3
]
D、[
1
4
,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足
x≤3
x-y+2≥0
x+y-4≥0
,則x2+y2的取值范圍是
[8,34]
[8,34]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,則
y
x
的最大值是
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,則z=
x
y
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•威海一模)設(shè)實(shí)數(shù)x,y滿足
x+2y-4≤0
x-y≥0
y>0
,則x-2y的最大值為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案