6.下列函數(shù)中,圖象的一部分符合右圖的是(  )
A.$y=sin(x+\frac{π}{6})$B.$y=sin(2x-\frac{π}{6})$C.$y=sin(2x+\frac{π}{6})$D.$y=sin(2x+\frac{π}{3})$

分析 由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.

解答 解:由函數(shù)y=sin(ωx+φ)的圖象可得$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{12}$+$\frac{π}{6}$,∴ω=2,再根據(jù)五點(diǎn)法作圖可得2•$\frac{π}{12}$+φ=$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,∴函數(shù)的解析式為 y=sin(2x+$\frac{π}{3}$),
故選:D.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點(diǎn)法作圖求出φ的值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將一張邊長(zhǎng)為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是( 。
A.$\frac{32}{3}$$\sqrt{6}$cm3B.$\frac{64}{3}$$\sqrt{6}$cm3C.$\frac{32}{3}$$\sqrt{2}$cm3D.$\frac{64}{3}$$\sqrt{2}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“直線y=x+b與圓x2+y2=1相交”是“0<b<1”的( 。l件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知復(fù)數(shù)z+i,$\frac{z}{2+i}$均為實(shí)數(shù),且在復(fù)平面內(nèi),(z+ai)2的對(duì)應(yīng)點(diǎn)在第四象限內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列三句話按“三段論”模式,小前提是( 。
①y=cosx(x∈R)是三角函數(shù);
②三角函數(shù)是周期函數(shù);
③y=cosx(x∈R)是周期函數(shù).
A.B.C.D.①或③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow a$、$\overrightarrow b$是夾角為600的單位向量,$\overrightarrow c=3\overrightarrow a+2\overrightarrow b$,$\overrightarrow d=m\overrightarrow a-4\overrightarrow b$,(1)求$|{\overrightarrow a+3\overrightarrow b}|$;(2)當(dāng)m為何值時(shí),$\overrightarrow c$與$\overrightarrow d$平行?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知角α的終邊與單位圓在第二象限交于點(diǎn)P(m,$\frac{4}{5}$)
(1)求m的值
(2)求cos(α+$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$tanθ=\frac{1}{2}$,則cos2θ+sin2θ=( 。
A.$\frac{4}{5}$B.$\frac{6}{5}$C.$\frac{8}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}滿足:an+1=2an+2,a1=2.
(Ⅰ)證明:數(shù)列{an+2}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}≤1-\frac{1}{2^n}$,n∈N*.

查看答案和解析>>

同步練習(xí)冊(cè)答案