【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用 (單位:萬元)與隔熱層厚度 (單位: )滿足關系,若不建隔熱層,每年能源消耗費用為8萬元.設為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及的表達式;
(2)隔熱層修建多厚時,總費用達到最小,并求最小值。
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求函數的極值;
(2)對于曲線上的不同兩點,如果存在曲線上的點,且使得曲線在點處的切線,則稱為弦的伴隨直線,特別地,當時,又稱為的—伴隨直線.
①求證:曲線的任意一條弦均有伴隨直線,并且伴隨直線是唯一的;
②是否存在曲線,使得曲線的任意一條弦均有—伴隨直線?若存在,給出一條這樣的曲線,并證明你的結論;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,短軸一個端點到右焦點的距離為.
(1) 求橢圓的方程;
(2) 設直線與橢圓交于、兩點,坐標原點到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(ax2-x+1)(a>0,a≠1).
(1) 若a=,求函數f(x)的值域.
(2) 當f(x)在區(qū)間上為增函數時,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點處下上至處有兩種路徑.一種是從沿直線步行到,另一種是先從沿索道乘纜車到,然后從沿直線步行到.現有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)后,乙從乘纜車到,在處停留后,再從勻速步行到,假設纜車勻速直線運動的速度為,山路長為1260,經測量,.
(1)求索道的長;
(2)問:乙出發(fā)多少后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在處互相等待的時間不超過,乙步行的速度應控制在什么范圍內?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知是定義在 上的奇函數,且,當,時,有成立.
(Ⅰ)判斷在 上的單調性,并加以證明;
(Ⅱ)若對所有的恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數的一段圖象如圖5所示:將的圖像向右平移個單位,可得到函數的圖象,且圖像關于原點對稱,
(1)求的值;
(2)求的最小值,并寫出的表達式;
(3)若關于的函數在區(qū)間上最小值為,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知長方形中, , , 為的中點.將沿折起,使得平面平面.
(1)求證: ;
(2)若點是線段上的一動點,問點在何位置時,二面角的余弦值為.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com