設(shè)一扇形的圓心角為120°,半徑為3cm,則扇形面積為
cm2
分析:知道扇形的圓心角,半徑,運用扇形面積公式就能求得面積.
解答:解:根據(jù)題意,
S扇形=
1
2
×α×r2
=
1
2
×
120
180
π×32=3π

故答案為 3π
點評:本題主要考查扇形面積的計算,知道扇形面積計算公式S=
1
2
×α×r2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是兩個獨立的轉(zhuǎn)盤(A)、(B),在兩個圖中三個扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個轉(zhuǎn)盤進(jìn)行玩游戲,規(guī)則是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤待指針停下(當(dāng)兩個轉(zhuǎn)盤中任意一個指針恰好落在分界線時,則這次轉(zhuǎn)動無效,重新開始),記轉(zhuǎn)盤(A)指針?biāo)鶎Φ膮^(qū)域數(shù)為x,轉(zhuǎn)盤(B)指針?biāo)鶎Φ膮^(qū)域為y,x、y∈{1,2,3},設(shè)x+y的值為ξ,每一次游戲得到獎勵分為ξ
(1)求x<2且y>1的概率;
(2)某人進(jìn)行了12次游戲,求他平均可以得到的獎勵分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖扇形AOB是一個觀光區(qū)的平面示意圖,其中∠AOB的圓心角為
3
,半徑OA為1Km,為了便于游客觀光休閑,擬在觀光區(qū)內(nèi)鋪設(shè)一條從入口A到出口B的觀光道路,道路由圓弧AC、線段CD及線段BD組成.其中D在線段OB上,且CD∥AO,設(shè)∠AOC=θ,
(1)用θ表示CD的長度,并寫出θ的取值范圍.
(2)當(dāng)θ為何值時,觀光道路最長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,有兩個獨立的轉(zhuǎn)盤(A)、(B).兩個圖中三個扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個轉(zhuǎn)盤進(jìn)行玩游戲,規(guī)則是:依次隨機轉(zhuǎn)動兩個轉(zhuǎn)盤再隨機停下(指針固定不會動,當(dāng)指針恰好落在分界線時,則這次結(jié)果無效,重新開始),記轉(zhuǎn)盤(A)指針對的數(shù)為x,轉(zhuǎn)盤(B)指針對的數(shù)為y.設(shè)x+y的值為ξ,每轉(zhuǎn)動一次則得到獎勵分ξ分.
(Ⅰ)求x<2且y>1的概率;
(Ⅱ) 某人玩12次,求他平均可以得到多少獎勵分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•珠海二模)如圖是兩個獨立的轉(zhuǎn)盤(A)、(B),在兩個圖中的四個扇形區(qū)域的圓心角分別為60°、120°、90°90°.用這兩個轉(zhuǎn)盤進(jìn)行玩游戲,規(guī)則是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤待指針停下(當(dāng)兩個轉(zhuǎn)盤中任意一個指針恰好落在分界線時,則這次轉(zhuǎn)動無效,重新開始),記轉(zhuǎn)盤(A)指針?biāo)鶎Φ膮^(qū)域數(shù)為x,轉(zhuǎn)盤(B)指針?biāo)鶎Φ膮^(qū)域數(shù)為y,x、y∈{1,2,3,4},設(shè)x+y的值為ξ,每一次游戲得到獎勵分為ξ.
(1)求x<3且y>2的概率;
(2)某人進(jìn)行了6次游戲,求他平均可以得到的獎勵分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南京市高三第二次模擬考試數(shù)學(xué)卷 題型:解答題

如圖扇形AOB是一個觀光區(qū)的平面示意圖,其中∠AOB的圓心角為,半徑OA為1Km,為了便于游客觀光休閑,擬在觀光區(qū)內(nèi)鋪設(shè)一條從入口A到出口B的觀光道路,道路由圓弧AC、線段CD及線段BD組成。其中D在線段OB上,且CD//AO,設(shè)∠AOC=θ,

(1)用θ表示CD的長度,并寫出θ的取值范圍。

(2)當(dāng)θ為何值時,觀光道路最長?

 

查看答案和解析>>

同步練習(xí)冊答案