(2013•石景山區(qū)二模)如圖所示的程序框圖表示求算式“2×3×5×9×17”之值,則判斷框內(nèi)可以填入( 。
分析:由程序運(yùn)行的過程看這是一個求幾個數(shù)的乘積的問題,驗(yàn)算知2×3×5×9×17五個數(shù)的積故程序只需運(yùn)行5次.運(yùn)行5次后,k值變?yōu)?3,即可得答案.
解答:解:由題設(shè)條件可以看出,此程序是一個求幾個數(shù)的連乘積的問題,
第一次乘入的數(shù)是2,由于程序框圖表示求算式“2×3×5×9×17”之值,
以后所乘的數(shù)依次為3,5,9,17,
2×3×5×9×17五個數(shù)的積故程序只需運(yùn)行5次,運(yùn)行5次后,k值變?yōu)?3,
故判斷框中應(yīng)填k<33,或者k≤22.
故選C.
點(diǎn)評:本題考查識圖的能力,考查根據(jù)所給信息給循環(huán)結(jié)構(gòu)中判斷框填加條件以使程序運(yùn)行的結(jié)果是題目中所給的結(jié)果.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)二模)對于直線m,n和平面α,β,使m⊥α成立的一個充分條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)若直角坐標(biāo)平面內(nèi)的兩點(diǎn)P、Q滿足條件:
①P、Q都在函數(shù)y=f(x)的圖象上;
②P、Q關(guān)于原點(diǎn)對稱,則稱點(diǎn)對[P,Q]是函數(shù)y=f(x)的一對“友好點(diǎn)對”(點(diǎn)對[P,Q]與[Q,P]看作同一對“友好點(diǎn)對”),
已知函數(shù)f(x)=
log2x(x>0)
-x2-4x(x≤0)
,則此函數(shù)的“友好點(diǎn)對”有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)設(shè)集合M={x|x2≤4),N={x|log2 x≥1},則M∩N等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)某四棱錐的三視圖如圖所示,則最長的一條側(cè)棱長度是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)將一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為m,第二次出現(xiàn)的點(diǎn)數(shù)為n,向量
p
=(m,n),
q
=(3,6),則向量
p
q
共線的概率為( 。

查看答案和解析>>

同步練習(xí)冊答案