給出下列命題:
,使得;    ②曲線表示雙曲線;
的遞減區(qū)間為 ④對(duì),使得其中真命題為       (填上序號(hào))
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個(gè)頂點(diǎn),△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)分別作直線,交橢圓于兩點(diǎn),設(shè)兩直線的斜率分別為,,且,證明:直線過定點(diǎn)().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本題滿分15分)長為3的線段的兩個(gè)端點(diǎn)分別在軸上移動(dòng),點(diǎn)在直線上且滿足.(I)求點(diǎn)的軌跡的方程;(II)記點(diǎn)軌跡為曲線,過點(diǎn)任作直線交曲線兩點(diǎn),過作斜率為的直線交曲線于另一點(diǎn).求證:直線與直線的交點(diǎn)為定點(diǎn)(為坐標(biāo)原點(diǎn)),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一條曲線上的點(diǎn)到定點(diǎn)的距離是到定點(diǎn)距離的二倍,求這條曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,頂點(diǎn)A,B,動(dòng)點(diǎn)D,E滿足:①;②,③共線.
(Ⅰ)求△ABC頂點(diǎn)C的軌跡方程;
(Ⅱ)是否存在圓心在原點(diǎn)的圓,只要該圓的切線與頂點(diǎn)C的軌跡有兩個(gè)不同交點(diǎn)M,N,就一定有,若存在,求該圓的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=4x2的焦點(diǎn)坐標(biāo)是(   )
A.(1,0)B.(0,1)C.(,0)D.(0,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,F(xiàn)是拋物線的焦點(diǎn),Q是準(zhǔn)線與x軸的交點(diǎn),直線經(jīng)過點(diǎn)Q。
(Ⅰ)直線與拋物線有唯一公共點(diǎn),求方程;
(Ⅱ)直線與拋物線交于A、B兩點(diǎn);
(i)設(shè)FA、FB的斜率分別為,求的值;
(ii)若點(diǎn)R在線段AB上,且滿足,求點(diǎn)R的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的方程為,點(diǎn)分別為其左、右頂點(diǎn),點(diǎn)分別為其左、右焦點(diǎn),以點(diǎn)為圓心,為半徑作圓;以點(diǎn)為圓心,為半徑作圓;若直線被圓和圓截得的弦長之比為;
(1)求橢圓的離心率;
(2)己知,問是否存在點(diǎn),使得過點(diǎn)有無數(shù)條直線被圓和圓截得的弦長之比為;若存在,請(qǐng)求出所有的點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的準(zhǔn)線與雙曲線的左準(zhǔn)線重合,則p的值為 ▲  

查看答案和解析>>

同步練習(xí)冊(cè)答案