【題目】已知三棱錐P-ABC底面各棱長(zhǎng)均為1、高為,其內(nèi)切球的球心為0,半徑為r.求底面ABC內(nèi)與點(diǎn)O距離不大于2r的點(diǎn)所形成的平面區(qū)域的面積.
【答案】
【解析】
先求內(nèi)切球半徑r.
如圖,設(shè)球心O在面ABC、面ABP內(nèi)的射影分別為H、K,AB的中點(diǎn)為M.
則P、K、M、P、O、H分別三點(diǎn)共線.
從而,
且,,
,.
于是,
解得
設(shè)T為底面ABC中任意一點(diǎn),則.
以為半徑作,所考慮的平面區(qū)域即為與的交集.
如圖,設(shè)與AB交于點(diǎn)U、V,與BC交于點(diǎn)W、X,與CA交于點(diǎn)Y、Z.
注意到,.
故.
由此,知、 均是以為直角邊長(zhǎng)的等腰直角三角形,而區(qū)域HVW、HXY、HZU均是以為半徑、為圓心角的扇形.
故所求的平面區(qū)域的面積S等于這三個(gè)三角形與三個(gè)扇形面積之和.
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體中,是正方形,,,,且,,、分別為棱、的中點(diǎn).
(1)求證:平面;
(2)求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0).三角形ABM的兩條邊AM,BM所在直線的斜率之積是-.
(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)設(shè)直線AM方程為,直線l方程為x=2,直線AM交l于P,點(diǎn)P,Q關(guān)于x軸對(duì)稱,直線MQ與x軸相交于點(diǎn)D.若△APD面積為2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了增強(qiáng)學(xué)生的記憶力和辨識(shí)力,組織了一場(chǎng)類似《最強(qiáng)大腦》的PK賽,兩隊(duì)各由4名選手組成,每局兩隊(duì)各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分.假設(shè)每局比賽A隊(duì)選手獲勝的概率均為,且各局比賽結(jié)果相互獨(dú)立,比賽結(jié)束時(shí)A隊(duì)的得分高于B隊(duì)的得分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求正整數(shù)n的最大值,使得對(duì)任意一個(gè)以為頂點(diǎn)的n階簡(jiǎn)單圖,總能找到集合的n個(gè)子集,滿足:當(dāng)且僅當(dāng)與相鄰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪”口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級(jí)開設(shè)冰球課程,為了解學(xué)生對(duì)冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對(duì)冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對(duì)冰球運(yùn)動(dòng)沒(méi)有興趣.
(1)完成下面的列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為“對(duì)冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒(méi)興趣 | 合計(jì) | |
男 | 55 | ||
女 | |||
合計(jì) |
(2)若將頻率視為概率,現(xiàn)再?gòu)脑撔R荒昙?jí)全體學(xué)生中,采用隨機(jī)抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對(duì)冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072/p> | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,已知的有中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重的疾病,新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,某小區(qū)為進(jìn)一步做好新型冠狀病毒肺炎疫情知識(shí)的教育,在小區(qū)內(nèi)開展“新型冠狀病毒防疫安全公益課”在線學(xué)習(xí),在此之后組織了“新型冠狀病毒防疫安全知識(shí)競(jìng)賽”在線活動(dòng).已知進(jìn)入決賽的分別是甲、乙、丙、丁四位業(yè)主,決賽后四位業(yè)主相應(yīng)的名次為第1,2,3,4名,該小區(qū)為了提高業(yè)主們的參與度和重視度,邀請(qǐng)小區(qū)內(nèi)的所有業(yè)主在比賽結(jié)束前對(duì)四位業(yè)主的名次進(jìn)行預(yù)測(cè),若預(yù)測(cè)完全正確將會(huì)獲得禮品,現(xiàn)用a,b,c,d表示某業(yè)主對(duì)甲、乙、丙、丁四位業(yè)主的名次做出一種等可能的預(yù)測(cè)排列,記X=|a﹣1|+|b﹣2|+|c﹣3|+|d﹣4|.
(1)求該業(yè)主獲得禮品的概率;
(2)求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列結(jié)論:
①若為真命題,則、均為真命題;
②命題“若,則”的逆否命題是“若,則”;
③若命題,,則,;
④“”是“”的充分不必要條件.其中正確的結(jié)論有____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com