函數(shù)y=lg
1-x
3+x
的對稱中心是
 
考點:對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:欲找出圖象的對稱軸或?qū)ΨQ中心,先研究函數(shù)的性質(zhì),如奇偶性,對稱性等,如函數(shù)是奇函數(shù),則其圖象關(guān)于原點對稱,如是偶函數(shù),則其圖象關(guān)于y軸對稱.
解答: 解:∵y=lg
1-x
3+x
定義域為,-3<x<1,
x趨于-3時,y趨于正無窮,
x趨于1時,y趨于負(fù)無窮,
y在定義域(-3,1)上是單調(diào)減函數(shù),
y=0時:y=lg
1-x
3+x
=0,
1-x
3+x
=1,
解得x=-1,
所以:對稱中心是(-1,0)
故答案為:(-1,0)
點評:本題主要考查了對數(shù)函數(shù)的圖象,研究函數(shù)圖象的對稱性問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x=2k+1,k∈Z},B={x|x=4k+3,k∈Z},求∁AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+lnx,函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=ex,且g(0)•g′(1)=e
(Ⅰ)求f(x)的極值;
(Ⅱ)若?x∈(0,+∞),使得g(x)<
x-m+3
x
成立,試求實數(shù)m的取值范圍:
(Ⅲ)當(dāng)a=0時,對于?x∈(0,+∞),求證:g(x)-f(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-4x+3 ,x≤0
-x2-2x+3,x>0
,則不等式f(a2-4)>f(3a)的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a12+a22+…+an2=1,b12+b22+…+bn2=1,則a1b1+a2b2+…+anbn的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個命題:
①對于任意實數(shù)a、b、c,若a>b,c≠0,則ac>bc;
②設(shè)Sn是等差數(shù)列{an}的前n項和,若a2+a6+a10為一個確定的常數(shù),則S11也是一個確定的常數(shù);
③在三角形△ABC中,若sinA>sinB,恒有A>B;
④對于任意正實數(shù)x,若sinx>0,y=sinx+
2
sinx
,則y的最小值為2
2

其中正確命題的是
 
(把正確的答案題號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(sinx)=sin3x,則f(cos75°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)的焦點F與雙曲線
x2
12
-
y2
4
=1的一個焦點重合,直線y=x-4與拋物線交于A,B兩點,則|AB|等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CD、BE是△ABC的高,且相交于點F.若BF=FE,且FC=4FD=4,則FE=
 
,∠A=
 

查看答案和解析>>

同步練習(xí)冊答案