11.集合A={x|(x-4)(x+2)>0},B={x|-3≤x<1},則A∩B等于( 。
A.[-3,1)B.[-3,-2)C.[-3,-1]D.[-3,2)

分析 化簡集合A,根據(jù)交集的定義求出A∩B即可.

解答 解:集合A={x|(x-4)(x+2)>0}={x|x<-2或x>4},
B={x|-3≤x<1},
所以A∩B={x|-3≤x<-2}=[-3,-2).
故選:B.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x-2y≥0}\\{2x+2y-3≤0}\\{y≥\frac{1}{4}}\end{array}}\right.$,則z=2x-y的最大值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知D為△ABC的邊BC的中點,△ABC所在平面內(nèi)有一個點P,滿足$\overrightarrow{PA}$=$\overrightarrow{PB}$+$\overrightarrow{PC}$,則$\frac{|\overrightarrow{PD}|}{|\overrightarrow{AD}|}$的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某市為了緩解交通壓力,提倡低碳環(huán)保,鼓勵市民乘坐公共交通系統(tǒng)出行.為了更好地保障市民出行,合理安排運力,有效利用公共交通資源合理調(diào)度,在某地鐵站點進(jìn)行試點調(diào)研市民對候車時間的等待時間(候車時間不能超過20分鐘),以便合理調(diào)度減少候車時間,使市民更喜歡選擇公共交通.為此在該地鐵站的一些乘客中進(jìn)行調(diào)查分析,得到如下統(tǒng)計表和各時間段人數(shù)頻率分布直方圖:
分組等待時間(分鐘)人數(shù)
第一組[0,5)10
第二組[5,10)a
第三組[10,15)30
第四組[15,20)10
(Ⅰ)求出a的值;要在這些乘客中用分層抽樣的方法抽取10人,在這10個人中隨機(jī)抽取3人至少一人來自第二組的概率;
(Ⅱ)從這10人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,設(shè)這3個人共來自X個組,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)a=cos420°,函數(shù)f(x)=ax,則f(log2$\frac{1}{6}$)的值等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,如果輸入a=$\sqrt{3}$,b=1,那么輸出的b值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等差數(shù)列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數(shù)列.
(1)求{an}的通項公式an與前n項和公式Sn
(2)令bn=$\frac{{S{\;}_n}}{n+k}$,若{bn}是等差數(shù)列,求數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=$\frac{{x}^{2}+ax-2}{{x}^{2}-x+1}$的值域[-2,2],則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.經(jīng)過點P($\frac{1}{2}$,0)且與雙曲線4x2-y2=1只有一個交點的直線有3條.

查看答案和解析>>

同步練習(xí)冊答案