3.某空間幾何體的三視圖如圖所示,則該幾何體的外接球表面積為9π.

分析 利用三視圖的空間幾何體的結(jié)構(gòu)特征,鑲嵌在長方體中求解.

解答 解:根據(jù)三視圖得出幾何體為放倒的直三棱柱,
把它鑲嵌在長方體中,長寬為2,高為1,
∴體對角線外接球的半徑,
∴R=$\frac{1}{2}×\sqrt{{2}^{2}+{2}^{2}+{1}^{2}}$=$\frac{3}{2}$,
∴該幾何體的外接球表面積為:4π×$\frac{9}{4}$=9π,
故答案為:9π.

點評 本題綜合考查了空間幾何體的三角圖的運用,空間思維能力的運用,屬于中檔題,構(gòu)造思想的運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.據(jù)統(tǒng)計,在某銀行的一個營業(yè)窗口等候的人數(shù)及其相應(yīng)的概率如表:
排隊人數(shù)012345人及5人以上
概率0.050.140.350.30.10.06
設(shè)排隊人數(shù)為 0,1,2,3,4,5及5以上分別對應(yīng)事件A,B,C,D,E,F(xiàn),試求:
(Ⅰ)至多有1人排隊等候的概率;
(Ⅱ)至少有4人排隊等候的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.小王創(chuàng)建了一個由他和甲、乙、丙共4人組成的微信群,并向該群發(fā)紅包,每次發(fā)紅包的個數(shù)為1個(小王自己不搶),假設(shè)甲、乙、丙3人每次搶得紅包的概率相同.
(Ⅰ)若小王發(fā)2次紅包,求甲恰有1次搶得紅包的概率;
(Ⅱ)若小王發(fā)3次紅包,其中第1,2次,每次發(fā)5元的紅包,第3次發(fā)10元的紅包,記乙搶得所有紅包的錢數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.存在正數(shù)m,使得方程$\sqrt{3}$sinx-cosx=m的正根從小到大排成一個等差數(shù)列.若點A(1,m)在直線ax+by-2=0(a>0,b>0)上,則$\frac{1}{a}$+$\frac{2}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x+alnx(a∈R).
(1)若曲線y=f(x)在點(1,f(1))處與直線y=3x-2相切,求a的值;
(2)函數(shù)g(x)=f(x)-kx2有兩個零點x1,x2,試判斷$g'({\frac{{{x_1}+{x_2}}}{2}})$的符號,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.甲、乙兩盒中各有除顏色外完全相同的2個紅球和1個白球,現(xiàn)從兩盒中隨機各取一個球,則至少有一個紅球的概率為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在平面直角坐標系xOy中,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,長軸長為4,過橢圓的左頂點A作直線l,分別交橢圓和圓x2+y2=a2于相異兩點P,Q.
(1)若直線l的斜率為$\frac{1}{2}$,求$\frac{AP}{AQ}$的值;
(2)若$\overrightarrow{PQ}$=λ$\overrightarrow{AP}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.2016年“五一”期間,高速公路某服務(wù)區(qū)從七座以下小型汽車中,按進服務(wù)區(qū)的先后每間隔50輛就抽查一輛進行詢問調(diào)查.共詢問調(diào)查40名駕駛員.將他們在某段高速公路的車速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),
得到如圖所示的頻率分布直方圖.
(I)求這40輛小型車輛的平均車速(各組數(shù)據(jù)平均值可用其中間數(shù)值代替);
(II)若從車速在[60,70)的車輛中任意抽取2輛,求其中車速在[65,70)的車輛中至少有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點A(-1,1)及圓C:(x-3)2+(y-4)2=1,求過A的圓C的兩切線的切點連線所在直線的方程.

查看答案和解析>>

同步練習(xí)冊答案