考點:等差數(shù)列與等比數(shù)列的綜合
專題:等差數(shù)列與等比數(shù)列
分析:由已知得a
n+12=b
n•b
n+1,(n∈N
*),從而a
n=
,(n≥2),由a
n,b
n,a
n+1成等差數(shù)列,得2
=
+,(n≥2),由此能證明數(shù)列{
}是等差數(shù)列.由a
1=10,a
2=15,得
=
,從而b
n=(2
+
)
2=
+4n+8,(n≥2),由此能求出b
n=
+4n+8,(n∈N
*),a
n=
n
2+
n+6.(n∈N
*).
解答:
證明:∵b
n,a
n+1,b
n+1成等比數(shù)列,
∴a
n+12=b
n•b
n+1,(n∈N
*)
∴a
n+1=
,
∴a
n=
,(n≥2)
∵a
n,b
n,a
n+1成等差數(shù)列,
∴2b
n=a
n+a
n+1,(n∈N
*)
∴2b
n=
+
=
(
+),(n≥2)
2
=
+,(n≥2)
∴數(shù)列{
}是等差數(shù)列.
∵a
1=10,a
2=15,∴2b
1=a
1+a
2=25,b
1=
,
=
,
∵a
n=
,(n≥2),
∴a
2=
,
=
=3
,
∴d=
-=
,∴
=
+(n-1)•
=2
+
n,
∴b
n=(2
+
)
2=
+4n+8,(n≥2)
當n=1時,解得b
1=
,∴b
n=
+4n+8,(n∈N
*)
a
n=
b
n-1=
=(2
+
)(2
+
)
=8+2n+2(n-1)+
n(n-1)
=
n
2+
n+6.(n≥2)
當n=1時,解得a
1=10,滿足條件,
∴a
n=
n
2+
n+6.(n∈N
*)
點評:本題考查等差數(shù)列的證明,考查數(shù)列的通項公式的求法,是中檔題,解題時要認真審題,注意構(gòu)造法的合理運用.