【題目】多面體中,△為等邊三角形,△為等腰直角三角形,平面,平面.
(1)求證:;
(2)若,,求平面與平面所成的較小的二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)利用線面平行的性質定理,分別證得和,即可證;
(2)分別證得兩兩垂直,建立空間直角坐標系即可求解.
解:(1)證明:因為平面,
平面,平面平面,
所以,
同理可證,,
所以.
(2)因為△為等腰直角三角形,,所以,,
又,,所以四邊形為平行四邊形,
所以,
因為△為等邊三角形,所以,
取的中點,連結、,
因為,則,
又,且,
所以四邊形為平行四邊形,
所以,
在中,,
所以,即,進而,
同理可證,進而,
以點為原點,分別以,,所在直線為,,軸,建立空間直角坐標系,
則,,,,,
設平面的一個法向量為,
則,令,則,,
所以,
易知平面的一個法向量為,
,
所以平面與平面所成的較小的二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】莊子說:“一尺之錘,日取其半,萬世不竭”,這句話描述的是一個數(shù)列問題,現(xiàn)用程序框圖描述,如圖所示,若輸入某個正整數(shù)n后,輸出的S∈(,),則輸入的n的值為( 。
A.7B.6C.5D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校兩個班級100名學生在一次考試中的成績的頻率分布直方圖如圖所示,其中成績分組區(qū)如下表:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 |
(1)求頻率表分布直方圖中a的值;
(2)根據(jù)頻率表分布直方圖,估計這100名學生這次考試成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第三、四、五組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著社會的發(fā)展與進步,傳播和存儲狀態(tài)已全面進入數(shù)字時代,以數(shù)字格式存儲,以互聯(lián)網(wǎng)為平臺進行傳輸?shù)囊魳贰獢?shù)字音樂已然融入了我們的日常生活.雖然我國音樂相關市場仍處在起步階段,但政策利好使音樂產(chǎn)業(yè)逐漸得到資本市場更多的關注.對比如下兩幅統(tǒng)計圖,下列說法正確的是( )
A.2011~2018年我國音樂產(chǎn)業(yè)投融資事件數(shù)量逐年增長
B.2013~2018年我國錄制音樂營收與音樂產(chǎn)業(yè)投融資事件數(shù)量呈正相關關系
C.2016年我國音樂產(chǎn)業(yè)投融資事件的平均營收約為1.27億美元
D.2013~2019年我國錄制音樂營收年增長率最大的是2018年
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學生考試中答對但得不了滿分的原因多為答題不規(guī)范,具體表現(xiàn)為:解題結果正確,無明顯推理錯誤,但語言不規(guī)范、缺少必要文字說明、卷面字跡不清、得分要點缺失等,記此類解答為“類解答”.為評估此類解答導致的失分情況,某市教研室做了一項試驗:從某次考試的數(shù)學試卷中隨機抽取若干屬于“類解答”的題目,掃描后由近百名數(shù)學老師集體評閱,統(tǒng)計發(fā)現(xiàn),滿分12分的題,閱卷老師所評分數(shù)及各分數(shù)所占比例大約如下表:
教師評分(滿分12分) | 11 | 10 | 9 |
各分數(shù)所占比例 |
某次數(shù)學考試試卷評閱采用“雙評+仲裁”的方式,規(guī)則如下:兩名老師獨立評分,稱為一評和二評,當兩者所評分數(shù)之差的絕對值小于等于1分時,取兩者平均分為該題得分;當兩者所評分數(shù)之差的絕對值大于1分時,再由第三位老師評分,稱之為仲裁,取仲裁分數(shù)和一、二評中與之接近的分數(shù)的平均分為該題得分;當一、二評分數(shù)和仲裁分數(shù)差值的絕對值相同時,取仲裁分數(shù)和前兩評中較高的分數(shù)的平均分為該題得分.(假設本次考試閱卷老師對滿分為12分的題目中的“類解答”所評分數(shù)及比例均如上表所示,比例視為概率,且一、二評與仲裁三位老師評分互不影響).
(1)本次數(shù)學考試中甲同學某題(滿分12分)的解答屬于“類解答”,求甲同學此題得分的分布列及數(shù)學期望;
(2)本次數(shù)學考試有6個解答題,每題滿分均為12分,同學乙6個題的解答均為“類解答”,記該同學6個題中得分為的題目個數(shù)為,,,計算事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,將曲線繞極點逆時針旋轉后得到曲線.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)若直線:與,分別相交于異于極點的,兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國慶節(jié)來臨,某公園為了豐富廣大人民群眾的業(yè)余生活,特地以“我們都是中國人”為主題舉行猜謎語競賽.現(xiàn)有兩類謎語:一類叫事物謎,就是我們常說的謎語;另一類叫文義謎,也就是我們常說的燈謎,共8道題,其中事物謎4道題,文義謎4道題,孫同學從中任取3道題解答.
(1)求孫同學至少取到2道文義謎題的概率;
(2)如果孫同學答對每道事物謎題的概率都是,答對每道文義謎題的概率都是,且各題答對與否相互獨立,已知孫同學恰好選中2道事物謎題,1道文義謎題,用表示孫同學答對題的個數(shù),求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對數(shù)是簡化繁雜運算的產(chǎn)物.16世紀時,為了簡化數(shù)值計算,數(shù)學家希望將乘除法歸結為簡單的加減法.當時已經(jīng)有數(shù)學家發(fā)現(xiàn)這在某些情況下是可以實現(xiàn)的.
比如,利用以下2的次冪的對應表可以方便地算出的值.
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 |
首先,在第二行找到16與256;然后找出它們在第一行對應的數(shù),即4與8,并求它們的和,即12;最后在第一行中找到12,讀出其對應的第二行中的數(shù)4096,這就是的值.
用類似的方法可以算出的值,首先,在第二行找到4096與128;然后找出它們在第一行對應的數(shù),即12與7,并求它們的______;最后在第一行中找到______,讀出其對應的第二行中的數(shù)______,這就是值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(其中是自然對數(shù)的底數(shù)),,.
(1)討論函數(shù)的單調性;
(2)設函數(shù),若對任意的恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com