給定雙曲線數(shù)學公式,過點B(1,1)能否作直線l,使直線l與雙曲線交于P,Q兩點,且點B是線段PQ的中點?若存在,求出直線l的方程;若不存在,請說明理由.

解:設過點B(1,1)的直線方程為y=k(x-1)+1(當k存在時)或x=1(當k不存在時).
(1)當k存在時,有
得(2-k2)x2+(2k2-2k)x-k2+2k-3=0 (1)
當直線與雙曲線相交于兩個不同點,則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,
∴k<
設P(x1,y1),Q(x2,y2
∴x1+x2=,又B(1,1)為線段PQ的中點
=1 即=1
∴k=2
當k=2,使2-k2≠0但使△<0
因此當k=2時,方程(1)無實數(shù)解
故過點B(1,1)與雙曲線交于兩點P、Q且B為線段PQ中點的直線不存在.
(2)當k不存在時,即當x=1時,直線經(jīng)過點B,但不滿足條件,
綜上,符合條件的直線l不存在.
分析:先假設存在這樣的直線l,分類討論:斜率存在和斜率不存在設出直線l的方程,①當k存在時,與雙曲線方程聯(lián)立,消去y,得到關于x的一元二次方程,直線與雙曲線相交于兩個不同點,則△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,可求k的范圍,再由B是線段PQ的中點,則=1,可求k,看是否矛盾,②當k不存在時,直線經(jīng)過點B但不滿足條件,故符合條件的直線l不存在,綜合可求
點評:本題考察了直線與雙曲線的位置關系,特別是相交時的中點弦問題,方程的根與系數(shù)關系的應用,及利用方程思想判斷直線與曲線位置關系
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給定雙曲線x2-
y22
=1

(1)過點A(2,1)的直線L與所給的雙曲線交于兩點P1及P2,求線段P1P2的中點P的軌跡方程.
(2)過點B(1,1)能否作直線m,使m與所給雙曲線交于兩點Q1及Q2,且點B是線段Q1Q2的中點?這樣的直線m如果存在,求出它的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•福建模擬)已知中心的坐標原點,以坐標軸為對稱軸的雙曲線C過點Q(2,
3
3
)
,且點Q在x軸上的射影恰為該雙曲線的一個焦點F1
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個焦點F作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB|
|FM|
為定值,且定值是
10
3
”.命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F、M兩點間距離的比值.試類比上述命題,寫出一個關于拋物線C的類似的正確命題,并加以證明
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定雙曲線x2-
y22
=1
,過點B(1,1)能否作直線l,使直線l與雙曲線交于P,Q兩點,且點B是線段PQ的中點?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年廣東省湛江一中高三易錯題數(shù)學試卷(理科)(解析版) 題型:解答題

給定雙曲線,過點B(1,1)能否作直線l,使直線l與雙曲線交于P,Q兩點,且點B是線段PQ的中點?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案