【題目】下列各對事件中,不互為相互獨(dú)立事件的是(

A.擲一枚骰子一次,事件“出現(xiàn)偶數(shù)點(diǎn)”;事件“出現(xiàn)3點(diǎn)或6點(diǎn)”

B.袋中有3白、2黑共5個大小相同的小球,依次有放回地摸兩球,事件“第一次摸到白球”,事件“第二次摸到白球”

C.袋中有3白、2黑共5個大小相同的小球,依次不放回地摸兩球,事件“第一次摸到白球”,事件“第二次摸到黑球”

D.甲組3名男生,2名女生;乙組2名男生,3名女生,現(xiàn)從甲、乙兩組中各選1名同學(xué)參加演講比賽,事件“從甲組中選出1名男生”,事件“從乙組中選出1名女生”

【答案】C

【解析】

利用相互獨(dú)立事件的定義直接判斷各選項(xiàng),即可得到結(jié)果.

對于選項(xiàng)A,事件發(fā)生與否與無關(guān),同時,事件發(fā)生與否與無關(guān),則事件與事件N是相互獨(dú)立事件;

對于選項(xiàng)B,袋中有3白、2黑共5個大小相同的小球,依次有放回地摸兩球,事件“第一次摸到白球”,事件“第二次摸到白球”, 則事件發(fā)生與否與無關(guān),同時,事件發(fā)生與否與無關(guān),則事件與事件是相互獨(dú)立事件;

對于選項(xiàng)C,袋中有3白、2黑,5個大小相同的小球,依次不放回地摸兩球, 事件“第一次摸到白球”,事件“第二次摸到黑球”, 則事件發(fā)生與否和事件有關(guān),故事件和事件與不是相互獨(dú)立事件;

對于選項(xiàng)D,甲組3名男生,2名女生;乙組2名男生,3名女生,現(xiàn)從甲、乙兩組中各選1名同學(xué)參加演講比賽,事件“從甲組中選出1名男生”,事件“從乙組中選出1名女生”, 則事件發(fā)生與否與無關(guān),同時,事件發(fā)生與否與無關(guān),則事件與事件是相互獨(dú)立事件;

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

①若有兩個零點(diǎn),則實(shí)數(shù)的取值范圍是 ___________;

②若,則滿足 的取值范圍是 _________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線和曲線,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.

(1)求曲線和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)是曲線上一動點(diǎn),過點(diǎn)作線段的垂線交曲線于點(diǎn),求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把5件不同產(chǎn)品擺成一排.

(1)若產(chǎn)品A必須擺在正中間,排法有多少種?

(2)若產(chǎn)品A必須擺在兩端,產(chǎn)品B不能擺在兩端的排法有多少種?

(3)若產(chǎn)品A與產(chǎn)品B相鄰,且產(chǎn)品A與產(chǎn)品C不相鄰,則不同的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個說法:

①命題“,都有”的否定是“,使得”;

②已知、,命題“若,則”的逆否命題是真命題;

的必要不充分條件;

④若為函數(shù)的零點(diǎn),則.

其中正確的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,,分別是線段,的中點(diǎn),

(1)證明:平面;

(2)求F到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某條地鐵線路通車后,地鐵的發(fā)車時間間隔為t(單位:分鐘),并且.經(jīng)市場調(diào)研測算,地鐵載客量與發(fā)車時間間隔t相關(guān),當(dāng)時,地鐵為滿載狀態(tài),載客量為450人;當(dāng)時,載客量會減少,減少的人數(shù)與的平方成正比,且發(fā)車時間間隔為2分鐘時的載客量為258人,記地鐵載客量為(單位:人).

1)求的解析式,并求當(dāng)發(fā)車時間間隔為5分鐘時,地鐵的載客量.

2)若該線路每分鐘的利潤為(單位:元),問當(dāng)發(fā)車時間間隔為多少時,該線路每分鐘的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐,是等邊三角形底面是直角梯形,,,是線段的中點(diǎn)底面,已知.

(1)求二面角的正弦值;

(2)試在平面上找一點(diǎn)使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,的平分線,且,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案