記數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=2Sn+1.已知數(shù)列{bn}滿足bn-2=3log3an
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn
【答案】分析:(Ⅰ)由an+1=2Sn+1,用n-1代替n得an=2Sn-1+1 (n≥2),用兩式相減的方法再化簡,得{an}是首項(xiàng)為1,公比為3的等比數(shù)列.得出{an}和的通項(xiàng)公式,代入bn-2=3log3an,即可得到{bn}的通項(xiàng)為bn=3n-1.
(Ⅱ)cn表達(dá)式的形式是等差和等比對應(yīng)項(xiàng)的積構(gòu)成的,因此可以用錯(cuò)位相減法求{cn}的前n項(xiàng)和Tn,即先將等式的兩邊都乘以等比數(shù)列的公比,再將得到的新式子與原式相減,就可以化為利用等比數(shù)列求和公式的方法解出這個(gè)和.
解答:解:(Ⅰ)由an+1=2Sn+1,得an=2Sn-1+1,(n≥2)
兩式相減,得an+1-an=2an,an+1=3an,(n≥2)
又a2=2S1+1,∴a2=3a1
所以{an}是首項(xiàng)為1,公比為3的等比數(shù)列.
∴an=3n-1.…(4分)
又∵bn=3log3an+2=3log33n-1+2=3(n-1)+2=3n-1.
∴bn=3n-1..…(7分)
(Ⅱ)由(Ⅰ),得cn=(3n-1)×3n-1..…(8分)
∴Tn=2×1+5×31+8×32+…+(3n-4)×3n-2+(3n-1)×3n-1,…(9分)
3Tn=2×3+5×32+8×33+…+(3n-4)×3n-1+(3n-1)×3n,
兩式相減,得:-2Tn=2+3×3+3×32+…+3×3n-1-(3n-1)×3n=,
…(13分)
應(yīng)改為:-2Tn=2+3×3+3×32+…+3×3n-1-(3n-1)×3n=,
…(13分)
點(diǎn)評:此題考查已知數(shù)列的遞推關(guān)系和利用因式分解求出數(shù)列的通項(xiàng)公式的知識點(diǎn),屬于中檔題.準(zhǔn)確運(yùn)用等差、等比數(shù)列的通項(xiàng)與求和公式,利用錯(cuò)位相減法求和,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n(n-1),則該數(shù)列是(  )
A、公比為2的等比數(shù)列
B、公比為
1
2
的等比數(shù)列
C、公差為2的等差數(shù)列
D、公差為4的等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,a2=4,an+2+2an=3an+1(n∈N*)
(1)求證:數(shù)列{an+1-an}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前n項(xiàng)和Sn,求使得Sn>21-2n成立的最小整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的項(xiàng)是由1或0構(gòu)成,且首項(xiàng)為1,在第k個(gè)1和第k+1個(gè)1之間有2k-1個(gè)0,即數(shù)列{an}為:1,0,1,0,0,0,1,0,0,0,0,0,1,…,記數(shù)列{an}的前n項(xiàng)和為Sn,則S2013=
45
45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中,a1,a2,…,am構(gòu)成首項(xiàng)為2,公差為-2的等差數(shù)列am+1,am+2,…,a2m,構(gòu)成首項(xiàng)為
1
2
,公比為
1
2
的等比數(shù)列,其中m≥3,m∈N+,
(l)當(dāng)1≤n≤2m,n∈N+,時(shí),求數(shù)列{an}的通項(xiàng)公式;
(2)若對任意的n∈N+,都有an+2m=an成立.
①當(dāng)a27=
1
64
時(shí),求m的值;
②記數(shù)列{an}的前n項(xiàng)和為Sn.判斷是否存在m,使得S4m+1≥2成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)記數(shù)列{an}的前n項(xiàng)和為Sn,所有奇數(shù)項(xiàng)之和為S′,所有偶數(shù)項(xiàng)之和為S″.
(1)若{an}是等差數(shù)列,項(xiàng)數(shù)n為偶數(shù),首項(xiàng)a1=1,公差d=
3
2
,且S″-S′=15,求Sn;
(2)若{an}是等差數(shù)列,首項(xiàng)a1>0,公差d∈N*,且S′=36,S″=27,請寫出所有滿足條件的數(shù)列;
(3)若數(shù)列{an}的首項(xiàng)a1=1,滿足2tSn+1-3(t-1)Sn=2t(n∈N*),其中實(shí)常數(shù)t∈(
3
5
,3)
,且S-S=
5
2
,請寫出滿足上述條件常數(shù)t的兩個(gè)不同的值和它們所對應(yīng)的數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案