17.平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,在極坐標(biāo)中,已知圓C經(jīng)過點(diǎn)$P({\sqrt{2},\frac{π}{4}})$,圓心為直線$l:ρsin({θ-\frac{π}{3}})=-\frac{{\sqrt{3}}}{2}$與極軸的交點(diǎn).求:
(1)直線l的直角坐標(biāo)方程.
(2)圓C的極坐標(biāo)方程.

分析 (1)利用極坐標(biāo)方程與直角坐標(biāo)方程的互化方法,可得直線l的直角坐標(biāo)方程.
(2)求出圓心與半徑,可得圓C的極坐標(biāo)方程.

解答 解:(1)直線$l:ρsin({θ-\frac{π}{3}})=-\frac{{\sqrt{3}}}{2}$,即$\frac{1}{2}ρsinθ-\frac{\sqrt{3}}{2}ρcosθ=-\frac{\sqrt{3}}{2}$,可化為$l:\sqrt{3}x-y-\sqrt{3}=0$;
(2)∵圓C圓心為直線$ρsin({θ-\frac{π}{3}})=-\frac{{\sqrt{3}}}{2}$與極軸的交點(diǎn),
∴在$ρsin({θ-\frac{π}{3}})=-\frac{{\sqrt{3}}}{2}$中令θ=0,得ρ=1.
∴圓C的圓心坐標(biāo)為(1,0).
∵圓C經(jīng)過點(diǎn)$P({\sqrt{2},\frac{π}{4}})$,
∴圓C的半徑為$PC=\sqrt{{{({\sqrt{2}})}^2}+{1^2}-2×1×\sqrt{2}cos\frac{π}{4}}=1$.
∴圓C經(jīng)過極點(diǎn).
∴圓C的極坐標(biāo)方程為ρ=2cosθ.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的互化、圓的極坐標(biāo)方程,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若點(diǎn)P(a,b)與Q(b-1,a+1)關(guān)于直線l對(duì)稱,則l的傾斜角為( 。
A.135°B.45°C.30°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.復(fù)平面中下列那個(gè)點(diǎn)對(duì)應(yīng)的復(fù)數(shù)是純虛數(shù)(  )
A.(1,2)B.(-3,0)C.(0,0)D.(0,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f (x)=a sin3x+b tan x+1,若f (2)=3,則f (2π-2)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E,F(xiàn)分別是棱DD1和AB上的點(diǎn),則下列說(shuō)法中正確的是②③④(填上所有正確命題的序號(hào))
①A1C⊥平面B1EF;
②在平面A1B1C1D1內(nèi)總存在與平面B1EF平行的直線;
③△B1EF在側(cè)面BCC1B1上的正投影是面積為定值的三角形;
④當(dāng)E,F(xiàn)分別是DD1和AB的中點(diǎn)時(shí),EF與平面BCC1B1所成角的正切值為$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ax2-2ax+lnx+a+1.
(1)當(dāng)$a=-\frac{1}{4}$時(shí),求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在區(qū)間[2,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)x∈[1,+∞]時(shí),函數(shù)y=f(x)圖象上的點(diǎn)都在$\begin{array}{l}\left\{\begin{array}{l}x≥1\\ y-x≤0\end{array}\right.\end{array}$所表示的平面區(qū)域內(nèi),求數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知雙曲線$\frac{x^2}{5}$-$\frac{y^2}{4}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,P是雙曲線右支上一點(diǎn),則|PF1|-|PF2|=2$\sqrt{5}$;離心率e=$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2
(1)求數(shù)列{an}的通項(xiàng)公式并求其前n項(xiàng)的和Sn
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問b6與數(shù)列{an}的第幾項(xiàng)相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若直線l的傾斜角為135°且過點(diǎn)A(1,1),則該直線l的方程為即y=-x+2.

查看答案和解析>>

同步練習(xí)冊(cè)答案