12.如圖,在長(zhǎng)方體ABCD一A′B′C′D′中,點(diǎn)P,Q分別是棱BC,CD上的動(dòng)點(diǎn),BC=4,CD=3,CC′=2$\sqrt{3}$,直線CC′與平面PQC′所成的角為30°,則△PQC′的面積的最小值是( 。
A.$\frac{18\sqrt{5}}{5}$B.8C.$\frac{16\sqrt{3}}{3}$D.10

分析 以C為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)P(0,a,0),Q(b,0,0),求出平面PQC′的法向量$\overrightarrow{n}$,則cos<$\overrightarrow{n},\overrightarrow{CC′}$>=$\frac{1}{2}$,解出a,b的關(guān)系式,得出△PQC的最小值,又C到平面PQC′的距離為$\sqrt{3}$,利用等體積法求出△PQC′的面積最小值.

解答 解:以C為原點(diǎn),以CD,CB,CC′為坐標(biāo)軸建立空間直角坐標(biāo)系,如圖所示:
則C(0,0,0),C′(0,0,2$\sqrt{3}$).設(shè)P(0,a,0),Q(b,0,0),于是0<a≤4,0<b≤3.
∴$\overrightarrow{QC′}$=(-b,0,2$\sqrt{3}$),$\overrightarrow{PC′}$=(0,-a,2$\sqrt{3}$),$\overrightarrow{CC′}$=(0,0,2$\sqrt{3}$),
設(shè)平面PQC′的一個(gè)法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PC′}=0}\\{\overrightarrow{n}•\overrightarrow{QC′}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-ay+2\sqrt{3}z=0}\\{-bx+2\sqrt{3}z=0}\end{array}\right.$,令z=1,得$\overrightarrow{n}$=($\frac{2\sqrt{3}}$,$\frac{2\sqrt{3}}{a}$,1).
∴$\overrightarrow{n}•\overrightarrow{CC′}$=2$\sqrt{3}$,|$\overrightarrow{CC′}$|=2$\sqrt{3}$,|$\overrightarrow{n}$|=$\sqrt{\frac{12}{^{2}}+\frac{12}{{a}^{2}}+1}$,
∴cos<$\overrightarrow{n},\overrightarrow{CC′}$>=$\frac{1}{\sqrt{\frac{12}{^{2}}+\frac{12}{{a}^{2}}+1}}$=$\frac{1}{2}$.
∴$\frac{12}{{a}^{2}}+\frac{12}{^{2}}=3$,∴a2+b2=$\frac{1}{4}{a}^{2}^{2}$≥2ab,解得ab≥8.
∴當(dāng)ab=8時(shí),S△PQC=4,棱錐C′-PQC的體積最小,
∵直線CC′與平面PQC′所成的角為30°,∴C到平面PQC′的距離d=2$\sqrt{3}$×$\frac{1}{2}$=$\sqrt{3}$.
∵VC′-PQC=VC-PQC′,
∴$\frac{1}{3}×4×2\sqrt{3}$=$\frac{1}{3}×{S}_{△PQC′}×\sqrt{3}$,∴S△PQC′=8.
故選:B.

點(diǎn)評(píng) 本題你考查了線面角的計(jì)算,空間向量的應(yīng)用,基本不等式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.執(zhí)行如圖所示的程序框圖,若輸出x的值為63,則輸入的x值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知等比數(shù)列{an}滿足a1=2,a1+a3+a5=14,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{5}}$=$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點(diǎn)分別是A,B,左、右焦點(diǎn)分別是F1,F(xiàn)2,若|F1F2|2=λ|AF1|•|BF2|(0<λ<4),則離心率e的取值范圍是$(0,\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,在三棱錐P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F(xiàn)分別是AQ,BQ,AP,BP的中點(diǎn),AQ=2BD,PD與EQ交于點(diǎn)G,PC與FQ交于點(diǎn)H,連接GH.
(Ⅰ)求證:AB∥GH;
(Ⅱ)求異面直線DP與BQ所成的角;
(Ⅲ)求直線AQ與平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.四棱錐P-ABCD中,底面ABCD為正方形,PA⊥面ABCD,PA=$\frac{1}{2}$AB.
(1)求PC與面PAB所成角的正切值;
(2)設(shè)M在PC上,且PD⊥面MAB,求$\frac{PM}{MC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,右焦點(diǎn)F(1,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)P在橢圓C上,且在第一象限內(nèi),直線PQ與圓O:x2+y2=b2相切于點(diǎn)M,且OP⊥OQ,求點(diǎn)Q的縱坐標(biāo)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足Sn=$\frac{1}{2}$-$\frac{1}{2}{a_n}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)f(x)=log3x,bn=anf(an),求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若(4$\sqrt{x}$+$\frac{1}{x}}$)n的展開式中各項(xiàng)系數(shù)之和為125,則展開式的常數(shù)項(xiàng)為48.

查看答案和解析>>

同步練習(xí)冊(cè)答案