分析 a、b為正實(shí)數(shù),可得a+b+3=ab≥$2\sqrt{ab}$+3,化為:$(\sqrt{ab}-3)(\sqrt{ab}+1)$≥0,解出即可得出.
解答 解:∵a、b為正實(shí)數(shù),∴a+b+3=ab≥$2\sqrt{ab}$+3,化為:$(\sqrt{ab}-3)(\sqrt{ab}+1)$≥0,
解得$\sqrt{ab}$≥3,即ab≥9.當(dāng)且僅當(dāng)a=b=3時(shí)取等號.
則ab的最小值為9.
故答案為:9.
點(diǎn)評 本題考查了基本不等式的性質(zhì)、一元二次不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(0)f(2)<0 | B. | f(1)f(2)<0 | C. | f(0)f(3)<0 | D. | f(0)f(1)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 4 | C. | 5 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com