【題目】某企業(yè)生產(chǎn)某種產(chǎn)品,為了提高生產(chǎn)效益,通過引進先進的生產(chǎn)技術(shù)和管理方式進行改革,并對改革后該產(chǎn)品的產(chǎn)量x(萬件)與原材料消耗量y(噸)及100件產(chǎn)品中合格品與不合格品數(shù)量作了記錄,以便和改革前作對照分析,以下是記錄的數(shù)據(jù):

表一:改革后產(chǎn)品的產(chǎn)量和相應的原材料消耗量

x

3

4

5

6

y

2.5

3

4

4.5

表二:改革前后定期抽查產(chǎn)品的合格數(shù)與不合格數(shù)

合格品的數(shù)量

不合格品的數(shù)量

合計

改革前

90

10

100

改革后

85

15

100

合計

175

25

200

(1)請根據(jù)表一提供數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.

(2)已知改革前生產(chǎn)7萬件產(chǎn)品需要6.5噸原材料,根據(jù)回歸方程預測生產(chǎn)7萬件產(chǎn)品能夠節(jié)省多少原材料?

(3)請根據(jù)表二提供的數(shù)據(jù),判斷是否有90%的把握認為“改革前后生產(chǎn)的產(chǎn)品的合格率有差異”?

【答案】(1)線性回歸方程為;(2)見解析;(3)見解析.

【解析】

(1)先計算,利用公式求解即可;

(2)代入(1)中的方程即可;

(3)計算,查表下結(jié)論即可.

(1)由表一得,

,

,

所以所求線性回歸方程為

(2)當時,,

從而能夠節(jié)省噸原材料.

(3)由表二得,

因此,沒有的把握認為“改革前后生產(chǎn)的產(chǎn)品的合格率有差異”.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線過原點.

1)若直線與圓相切,求直線的方程;

2)若直線與圓交于,兩點,當的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),其導函數(shù)為,且當時,,則不等式的解集為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中有四個小球,分別寫有“美麗中國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產(chǎn)生03之間取整數(shù)值的隨機數(shù),分別用01,2,3代表“中國美麗”這四個字,以每三個隨機數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):

232 321 230 023 123 021 132 220 001

231 130 133 231 031 320 122 103 233

由此可以估計,恰好第三次就停止的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點,是以為底邊的等腰三角形,點在直線:上.

(1)求邊上的高所在直線的方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知空間幾何體ABCDE中,△BCD與△CDE均是邊長為2的等邊三角形,△ABC是腰長為3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.

(1)試在平面BCD內(nèi)作一條直線,使得直線上任意一點FE的連線EF均與平面ABC平行,并給出證明;

(2)求三棱錐EABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,把等腰直角三角形沿斜邊所在直線旋轉(zhuǎn)至的位置,使.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,郊外有一邊長為200m的菱形池塘ABCD,塘邊ABAD的夾角為60°,擬架設(shè)三條網(wǎng)隔BE,BF,EF,把池塘分成幾個不同區(qū)域,其中網(wǎng)隔BEBF相互垂直,E,F(xiàn)兩點分別在塘邊ADDC,區(qū)域BEF為荷花種植區(qū)域記∠ABE=,荷花種植區(qū)域的面積為Sm2

(1)S關(guān)于的函數(shù)關(guān)系式;

(2)S的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018海南高三階段性測試(二模)如圖,在直三棱柱中, ,點的中點,點上一動點.

I)是否存在一點,使得線段平面?若存在,指出點的位置,若不存在,請說明理由.

II)若點的中點且,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案