9.已知函數(shù)f(x)滿足:①定義域?yàn)镽;②(3,1),都有f(x+2)=f(x);③當(dāng)x∈[-1,1]時(shí),f(x)=-|x|+1,則方程$f(x)=\frac{1}{2}{log_2}|x|$在區(qū)間[-3,5]內(nèi)解的個(gè)數(shù)是( 。
A.5B.6C.7D.8

分析 求出函數(shù)的周期,在同一坐標(biāo)系中,作出f(x)的圖象,再畫出y=$\frac{1}{2}$log2|x|的圖象,觀察得出交點(diǎn)個(gè)數(shù),即為方程解的個(gè)數(shù).

解答 解:∵?x∈R,都有f(x+2)=f(x),
∴函數(shù)的周期為2,
在同一坐標(biāo)系中,作出f(x)的圖象,再畫出y=$\frac{1}{2}$log2|x|的圖象
觀察得出交點(diǎn)數(shù)為5,
即方程f(x)=$\frac{1}{2}$log2|x|在區(qū)間[-3,5]內(nèi)解的個(gè)數(shù)是5.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的解析式的求法,函數(shù)的零點(diǎn)個(gè)數(shù),以及函數(shù)的圖象的畫法,考查數(shù)形結(jié)合的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.命題P:“方程x2+mx+1=0有兩個(gè)相異負(fù)根”,命題Q:“方程4x2+4(m-2)x+1=0無(wú)實(shí)根”,如果“P或Q”為真,“P且Q”為假,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=4t\\ y=3t-\frac{a}{4}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的單位長(zhǎng)度,且以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸)中,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)若直l線與圓C相切,求實(shí)數(shù)a的值;
(2)若點(diǎn)M的直角坐標(biāo)為(1,1),求過(guò)點(diǎn)M且與直線l垂直的直線m的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)f(x)是區(qū)間[a,b]上的函數(shù),如果對(duì)任意滿足a≤x<y≤b的x,y都有f(x)≤f(y),則稱f(x)是[a,b]上的升函數(shù),則f(x)是[a,b]上的非升函數(shù)應(yīng)滿足( 。
A.存在滿足x<y的x,y∈[a,b]使得f(x)>f(y)
B.不存在x,y∈[a,b]滿足x<y且f(x)≤f(y)
C.對(duì)任意滿足x<y的x,y∈[a,b]都有f(x)>f(y)
D.存在滿足x<y的x,y∈[a,b]都有f(x)≤f(y)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=$\sqrt{5}$.
(1)求證:PD⊥PB;
(2)求直線PB與平面PCD所成角的正弦值;
(3)在棱PA上是否存在點(diǎn)M,使得BM∥平面PCD?若存在,求$\frac{AM}{AP}$的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{2}=1$的左、右焦點(diǎn)為F1、F2,點(diǎn)F1關(guān)于直線y=-x的對(duì)稱點(diǎn)P在橢圓上,則△PF1F2的周長(zhǎng)為4+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.sin(-690°)的值為(  )
A.$({\frac{{\sqrt{3}}}{2}})$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=lnx,x∈(1,+∞)的圖象在點(diǎn)(x0,lnx0)處的切線為l,若l與函數(shù)g(x)=$\frac{1}{2}$x2的圖象相切,則x0必滿足(  )
(ln2≈0.6931,ln3≈1.0986)
A.1<x0<$\sqrt{2}$B.$\sqrt{2}$<x0<2C.2<x0<3D.3<x0<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)命題p:函數(shù)y=ax+2在R上為減函數(shù),命題q:曲線y=x2+ax+1與x軸交于不同的兩點(diǎn).若p∨q為真命題,p∧q為假命題,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案