已知函數(shù)f(x)=(
3
sinx+cosx)cosx-
1
2

(Ⅰ)用五點作圖法列表,作出函數(shù)f(x)在x∈[0,π]上的圖象簡圖;
(Ⅱ)若f(
a
2
+
π
6
)=
3
5
,-
π
2
<a<0,求sin(2a-
π
4
)的值.
考點:三角函數(shù)中的恒等變換應用,正弦函數(shù)的圖象
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)分別取出對應的x值和y值列表,然后描點,再用平滑曲線連接得函數(shù)圖象.
(Ⅱ)由f(
a
2
+
π
6
)=
3
5
,即可推得cosa=
3
5
,從而可求sina的值,進而求出sin2a=2sinacosa=-
24
25
,cos2a=2cos2a-1=-
7
25
,故可求得sin(2a-
π
4
)的值.
解答: 解:(1)f(x)=(
3
sinx+cosx)cosx-
1
2
=
3
sinxcosx+cos2x-
1
2
=
3
2
sin2x+
1
2
(2cos2x-1)
=sin(2x+
π
6
)

列表:

描點畫出簡圖如下:
 
(2)f(
a
2
+
π
6
)=sin[2(
a
2
+
π
6
)+
π
6
]=sin(a+
π
2
)=cosa=
3
5
,
∵-
π
2
<a<0,∴sina=-
4
5
,
∴sin2a=2sinacosa=-
24
25
,cos2a=2cos2a-1=-
7
25
,
sin(2a-
π
4
)=
2
2
(sin2a-cos2a)=-
17
2
50
點評:本題主要考察了三角函數(shù)中的恒等變換應用,考察了三角函數(shù)的圖象與性質(zhì),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga|bx|(其中a>0,b>0,且a≠1)函數(shù)的圖象經(jīng)過兩點(1,0),(4,2).
(1)求實數(shù)a,b的值,并寫出函數(shù)的解析式;
(2)判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的對稱中心為M(x0,y0),記函數(shù)f(x)的導函數(shù)為f′(x),f′(x)的導函數(shù)為f″(x),則有f″(x)=0.若函數(shù)f(x)=x3-3x2,則可求出f(
1
2014
)+f(
2
2014
)+f(
3
2014
)+…+f(
4026
2014
)+f(
4027
2014
)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義區(qū)間[x1,x2](x1<x2)的長度為x2-x1,已知函數(shù)f(x)=3|x|的定義域為[a,b],值域為[1,9],則區(qū)間[a,b]的長度的最大值與最小值的差為(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,若α與β的終邊互相垂直,那么α與β的關系式為( 。
A、β=α+90°
B、β=α±90°
C、β=α+90°+k•360°(k∈Z)
D、β=α±90°+k•360°(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

寫出-720°到720°之間與-1050°終邊相同的角的集合
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從分別寫有0、1、2、3、4的五張卡片中取出一張,記下數(shù)字后放回,再從中取出一張卡片并記下其數(shù)字,則二次取出的卡片上數(shù)字之和恰為4的有( 。
A、5種B、6種C、7種D、8種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義域為R的偶函數(shù),當x≤0時,f(x)=1+
1
x-1
;
(1)求f(2)的值及y=f(x)的解析式;
(2)用定義法判斷y=f(x)在區(qū)間(-∞,0]的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
).
(1)求函數(shù)f(x)的最小正周期;
(2)已知關于x的方程f(x)=2t在(
π
6
,
3
)
上有且只有一個根,求t的取值范圍;
(3)當x∈(
π
6
,
3
)
時,若不等式2[f(x)]2+af(x)+a>2(9)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案