已知函數(shù)f(x)=loga|bx|(其中a>0,b>0,且a≠1)函數(shù)的圖象經(jīng)過(guò)兩點(diǎn)(1,0),(4,2).
(1)求實(shí)數(shù)a,b的值,并寫(xiě)出函數(shù)的解析式;
(2)判斷f(x)的奇偶性.
考點(diǎn):對(duì)數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意得,
loga|b|=0
loga|4b|=2
,從而解出a,b;代入可得函數(shù)解析式;
(2)先寫(xiě)出定義域,再求f(-x)與f(x)的關(guān)系即可.
解答: 解:(1)由題意得,
loga|b|=0
loga|4b|=2
,
又∵a>0,b>0,且a≠1,
解得,a=2,b=1;
∴f(x)=log2|x|,(x≠0);
(2)函數(shù)f(x)的定義域?yàn)閧x|x≠0},
又∵f(-x)=log2|-x|=log2|x|=f(x),
∴函數(shù)f(x)為偶函數(shù).
點(diǎn)評(píng):本題考查了函數(shù)中參數(shù)的求法及函數(shù)奇偶性的判斷,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用坐標(biāo)法證明:在△ABC中,AO為BC邊上的中線,則|AB|2+|AC|2=2(|AO|2+|BO|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用lgx,lgy,lgz表示lg
x
y
z2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算a⊕b=
a(a>b)
b(a≤b)
,則函數(shù)f(x)=1⊕4x的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=cos2x+asin(
2
+x)的最小值為-6,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對(duì)角線AC與BD的交點(diǎn),M是PD的中點(diǎn).
(1)求證:OM∥平面PAB;  
(2)平面PBD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是圓O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)V是圓O所在平面外一點(diǎn),D是AC的中點(diǎn),已知AB=2,VA=VB=VC=2.
(1)求證:AC⊥平面VOD;
(2)求三棱錐C-ABV的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若Sn和Tn分別表示數(shù)列{an}和{bn}的前n項(xiàng)和,對(duì)任意正整數(shù)n,有an=-
2n+3
2
,4Tn-12Sn=13n.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=bn+
5
4
,若
1
c1c2
+
1
c2c3
+…+
1
cncn+1
11
100
,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(
3
sinx+cosx)cosx-
1
2

(Ⅰ)用五點(diǎn)作圖法列表,作出函數(shù)f(x)在x∈[0,π]上的圖象簡(jiǎn)圖;
(Ⅱ)若f(
a
2
+
π
6
)=
3
5
,-
π
2
<a<0,求sin(2a-
π
4
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案