16.圓C1:(x-m)2+(y+2)2=9與圓C2:(x+1)2+(y-m)2=4內(nèi)切,則m的值為-2或-1.

分析 計(jì)算兩圓的圓心距,令圓心距等于兩圓半徑之差解出m.

解答 解:圓C1的圓心為(m,-2),半徑為r1=3,
圓C2的圓心為(-1,m),半徑為r2=2,
∴兩圓的圓心距d=$\sqrt{(m+1)^{2}+(m+2)^{2}}$,
∵兩圓內(nèi)切,∴$\sqrt{(m+1)^{2}+(m+2)^{2}}$=1,
解得m=-2或m=-1.
故答案為:-2或-1.

點(diǎn)評 本題考查了圓的方程,圓與圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{3}t\\ y=t-\sqrt{3}\end{array}\right.$,曲線C的極坐標(biāo)方程為ρ=2cosθ.
(1)寫出直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)求直線l與曲線C的交點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.給出下面四個(gè)命題:①$\overrightarrow{AB}$+$\overrightarrow{BA}$=$\overrightarrow{0}$;②$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$;③$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$;其中正確的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,離心率$e=\frac{{\sqrt{3}}}{2}$,且短軸長為4.
(1)求橢圓的方程;
(2)過點(diǎn)P(2,1)作一弦,使弦被這點(diǎn)平分,求此弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)$\overrightarrow a=({3,4}),\overrightarrow b=({-1,7})$.
(1)求$\overrightarrow a•\overrightarrow b$;
(2)求$\overrightarrow a,\overrightarrow b$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,其上一點(diǎn)P(m,1)到焦點(diǎn)的距離為5,則拋物線的標(biāo)準(zhǔn)方程為x2=16y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,若$\frac{cosA}{cosC}$=$\frac{c}{a}$,則△ABC的形狀是( 。
A.等腰直角三角形B.直角三角形
C.等腰或直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.從[0,1]隨機(jī)取兩個(gè)數(shù)分別記為x,y,那么滿足$\sqrt{x}≥y≥{x^2}$的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,2),B(-2,0),C(1,0),分別以△ABC的邊AB、AC向外作正方形ABEF與ACGH,
(I)求直線FH的一般式方程;
(II)過直線FH上任意一點(diǎn)P作圓x2+y2=1的切線,當(dāng)切線長最短時(shí)求出P點(diǎn)坐標(biāo);
(III)過點(diǎn)(6,2)作圓x2+y2=1的兩條切線,切點(diǎn)為M,N,求直線MN的一般式方程.

查看答案和解析>>

同步練習(xí)冊答案