【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線C:(y﹣1)2﹣x2=1交于A,B兩點.
(1)求|AB|的長;
(2)在以O為極點,x軸的正半軸為極軸建立的極坐標系中,設點P的極坐標為,求點P到線段AB中點M的距離.
【答案】(1)2.(2)1
【解析】
(1)將直線l的參數(shù)方程的標準形式,代入曲線C的方程得.設點A,B對應的參數(shù)分別為μ1,μ2,可得μ1+μ2,μ1μ2的值,可得|AB|的長;
(2)將點P的極坐標化為直角坐標,可得中點M對應參數(shù),由參數(shù)μ的幾何意義,可得點P到線段AB中點M的距離|PM|.
解:(1)∵直線l的參數(shù)方程為(t為參數(shù)),
∴直線l的參數(shù)方程的標準形式為(μ為參數(shù)),
代入曲線C的方程得μ2+2μ﹣4=0.
設點A,B對應的參數(shù)分別為μ1,μ2,
則μ1+μ2=﹣2,μ1μ2=﹣4,
∴|AB|=|μ1﹣μ2|=2.
(2)∵點P的極坐標為,
∴由極坐標與直角坐標互化公式得點P的直角坐標為(﹣1,1),
∴點P在直線l上,中點M對應參數(shù)為1,
由參數(shù)μ的幾何意義,點P到線段AB中點M的距離|PM|=1.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,拋物線與圓的相交弦長為4.
(1)求拋物線的標準方程;
(2)點為拋物線的焦點,為拋物線上兩點,,若的面積為,且直線的斜率存在,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系內(nèi),已知是以點為圓心的圓上的一點,折疊該圓兩次使點分別與圓上不相同的兩點(異于點)重合,兩次的折痕方程分別為和,若圓上存在點,使得,其中點、,則的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(1)若為的極值點,求實數(shù)的值;
(2)若在上是單調增函數(shù),求實數(shù)的取值范圍;
(3)當時,方程有實根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A(0,﹣3),點M滿足|MA|=2|MO|.
(1)求點M的軌跡方程;
(2)若圓C:(x﹣c)2+(y﹣c+1)2=1,判斷圓C上是否存在符合題意的M;
(3)設P(x1,y1),Q(x2,y2)是點M軌跡上的兩個動點,點P關于點(0,1)的對稱點為P1,點P關于直線y=1的對稱點為P2,如果直線QP1,QP2與y軸分別交于(0,a)和(0,b),問(a﹣1)(b﹣1)是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,若acos2+ccos2=b.
(1)求證:a,b,c成等差數(shù)列;
(2)若∠B=60°,b=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解一種植物果實的情況,隨機抽取一批該植物果實樣本測量重量(單位:克),按照,,,,分為5組,其頻率分布直方圖如圖所示.
(1)求圖中的值;
(2)估計這種植物果實重量的平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)已知這種植物果實重量不低于32.5克的即為優(yōu)質果實,用樣本估計總體.若從這種植物果實中隨機抽取3個,其中優(yōu)質果實的個數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com