2.點(diǎn)P(-1,2)到直線3x-4y+12=0的距離為(  )
A.5B.$\frac{1}{5}$C.1D.2

分析 利用點(diǎn)到直線的距離公式即可得出.

解答 解:點(diǎn)P(-1,2)到直線3x-4y+12=0的距離d=$\frac{|-3-8+12|}{\sqrt{{3}^{2}+(-4)^{2}}}$=$\frac{1}{5}$.
故選:B.

點(diǎn)評(píng) 本題考查了點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在區(qū)間(1,2)內(nèi)隨機(jī)取個(gè)實(shí)數(shù)a,則直線y=2x,直線x=a與x軸圍成的面積大于$\frac{16}{9}$的概率是( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.執(zhí)行圖的程序框圖后,輸出的結(jié)果為( 。
A.$\frac{8}{5}$B.$\frac{4}{5}$C.$\frac{4}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知A(3,2),B(-4,1),C(0,-1),點(diǎn)Q線段AB上的點(diǎn),則直線CQ的斜率取值范圍是$(-∞,-\frac{1}{2}]∪[1,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,AB是圓O的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
( I)求證:平面PAC⊥平面PBC;
( II)若AC=1,PA=1,求圓心O到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.給出下列五個(gè)結(jié)論:
①?gòu)木幪?hào)為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本編號(hào)從小到大依次為007,032,…,則樣本中最大的編號(hào)是482;
②命題“?x∈R,均有x2-3x-2>0”的否定是:“?x0∈R,使得x02-3x0-2≤0”;
③將函數(shù)$y=\sqrt{3}cosx+sinx(x∈R)$的圖象向右平移$\frac{π}{6}$后,所得到的圖象關(guān)于y軸對(duì)稱;
④?m∈R,使$f(x)=({m-1})•{x^{{m^2}-4m+3}}$是冪函數(shù),且在(0,+∞)上遞增;
⑤如果{an}為等比數(shù)列,bn=a2n-1+a2n+1,則數(shù)列{bn}也是等比數(shù)列.
其中正確的結(jié)論為(  )
A.①②④B.②③⑤C.①③④D.①②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知指數(shù)函數(shù)y=g(x)滿足:g($\frac{1}{2}$)=$\sqrt{2}$,定義域?yàn)镽的函數(shù)f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函數(shù).
(1)確定y=f(x)和y=g(x)的解析式;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)解關(guān)于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知條件p:k=$\sqrt{3}$;條件q:直線y=kx+2與圓x2+y2=1相切,則¬p是¬q的( 。
A.充分必要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)的導(dǎo)數(shù)為f'(x),f'(0)>0,若?x∈R,恒有f(x)≥0,則$\frac{f(1)}{f'(0)}$的最小值是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案