A. | ①②④ | B. | ②③⑤ | C. | ①③④ | D. | ①②⑤ |
分析 由系統(tǒng)抽樣方法判斷①;寫(xiě)出命題的否定判斷②;利用輔助角公式化積,再由三角函數(shù)的圖象平移判斷③;由冪函數(shù)的概念及性質(zhì)判斷④;由等比數(shù)列的概念判斷⑤.
解答 解:①?gòu)木幪?hào)為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本編號(hào)從小到大依次為007,032,…,可知分段間隔為25,抽取20個(gè)樣本,則樣本中最大的編號(hào)是7+25×19=482,故①正確;
②命題“?x∈R,均有x2-3x-2>0”的否定是:“?x0∈R,使得x02-3x0-2≤0”,故②正確;
③將函數(shù)$y=\sqrt{3}cosx+sinx(x∈R)$=$2sin(x+\frac{π}{6})$的圖象向右平移$\frac{π}{6}$后,所得到的圖象對(duì)應(yīng)的函數(shù)解析式為y=2sinx,關(guān)于原點(diǎn)中心對(duì)稱(chēng),故③錯(cuò)誤;
④若$f(x)=({m-1})•{x^{{m^2}-4m+3}}$是冪函數(shù),則m-1=1,即m=2,則m2-4m+3=-1,則在(0,+∞)上遞減,故④錯(cuò)誤;
⑤如果{an}為等比數(shù)列,設(shè)其公比為q,且bn=a2n-1+a2n+1,則$\frac{_{n+1}}{_{n}}=\frac{{a}_{2n+1}+{a}_{2n+3}}{{a}_{2n-1}+{a}_{2n+1}}=\frac{{q}^{2}({a}_{2n-1}+{a}_{2n+1})}{{a}_{2n-1}+{a}_{2n+1}}={q}^{2}$,
∴數(shù)列{bn}也是等比數(shù)列,故⑤正確.
∴正確的命題是①②⑤.
故選:D.
點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查系統(tǒng)抽樣方法、命題的否定、三角函數(shù)的圖象平移、冪函數(shù)及等比數(shù)列的概念,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | $\frac{1}{5}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 不存在x0∈R,${x_0}^2-2{x_0}+1≥0$ | B. | 存在x0∈R,${x_0}^2-2{x_0}+1≤0$ | ||
C. | 存在x0∈R,${x_0}^2-2{x_0}+1<0$ | D. | 對(duì)任意的x∈R,x2-2x+1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com