(本小題滿分14分)
已知函數(shù),,函數(shù)的圖象在點(diǎn)處的切線平行于軸.
(1)確定與的關(guān)系;
(2)試討論函數(shù)的單調(diào)性;
(3)證明:對任意,都有成立.
(1)
(2)當(dāng)時,函數(shù)在(0,1)上單調(diào)遞增,在單調(diào)遞減;
當(dāng)時,函數(shù)在單調(diào)遞增,在單調(diào)遞減;在上單調(diào)遞增;
當(dāng)時,函數(shù)在上單調(diào)遞增,
當(dāng)時,函數(shù)在上單調(diào)遞增,在單調(diào)遞減;在上單調(diào)遞增.
(3)可以利用放縮不等式證明也可以構(gòu)造新數(shù)列利用數(shù)列的性質(zhì)證明還可以構(gòu)造函數(shù)利用導(dǎo)數(shù)證明
【解析】
試題分析:(1)依題意得,則
由函數(shù)的圖象在點(diǎn)處的切線平行于軸得:
∴ ……3分
(2)由(1)得 ……4分
∵函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013051114301534982218/SYS201305111430549905167381_DA.files/image010.png">
∴當(dāng)時,在上恒成立,
由得,由得,
即函數(shù)在(0,1)上單調(diào)遞增,在單調(diào)遞減; ……5分
當(dāng)時,令得或,
若,即時,
由得或,由得,
即函數(shù)在,上單調(diào)遞增,在單調(diào)遞減; ……6分
若,即時,
由得或,由得,
即函數(shù)在,上單調(diào)遞增,在單調(diào)遞減; ……7分
若,即時,在上恒有,
即函數(shù)在上單調(diào)遞增, ……8分
綜上得:當(dāng)時,函數(shù)在(0,1)上單調(diào)遞增,在單調(diào)遞減;
當(dāng)時,函數(shù)在單調(diào)遞增,在單調(diào)遞減;在上單調(diào)遞增;
當(dāng)時,函數(shù)在上單調(diào)遞增,
當(dāng)時,函數(shù)在上單調(diào)遞增,在單調(diào)遞減;在上單調(diào)遞增.
……9分
(3)證法一:由(2)知當(dāng)時,函數(shù)在單調(diào)遞增,,即, ……11分
令,則, ……12分
即 ……14分
【證法二:構(gòu)造數(shù)列,使其前項(xiàng)和,
則當(dāng)時,, ……11分
顯然也滿足該式,
故只需證 ……12分
令,即證,記,
則,
在上單調(diào)遞增,故,
∴成立,
即. ……14分】
【證法三:令,
則
……10分
令則,
記 ……12分
∵∴函數(shù)在單調(diào)遞增,
又即,
∴數(shù)列單調(diào)遞增,又,∴ ……14分】
考點(diǎn):本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)和不等式的證明.
點(diǎn)評:導(dǎo)數(shù)是研究函數(shù)性質(zhì)的有力工具,研究函數(shù)時,首先要看函數(shù)的定義域,求單調(diào)區(qū)間、極值、最值時,往往離不開分類討論,主要考查學(xué)生的分類討論思想的應(yīng)用和運(yùn)算求解能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com