【題目】如圖所示,正四面體ABCD的外接球的體積為4π,求正四面體的體積.

【答案】

【解析】

設(shè)正四面體的外接球的半徑為R,由已知得R. 如圖,連接DE,O1D,因?yàn)?/span>AE為球的直徑,故ADDE,AEO1D.

設(shè)ADa,則由已知得O1Da,故AO1a.所以O1E=2RAO1=2a.

由△AO1D∽△DO1EO1D2AO1·O1E,解得a,由此能求出正四面體ABCD的體積.

設(shè)正四面體的外接球的半徑為R

由已知得πR3=4π,故R.

如圖,連接DE,O1D,因?yàn)?/span>AE為球的直徑,故ADDE,AEO1D.

設(shè)ADa,則由已知得O1D×aa

AO1a.

所以O1E=2RAO1=2a.

由△AO1D∽△DO1EO1D2AO1·O1E,即a·,解得a (a=0舍去).

故正四面體的體積V×a2·AO1×8×.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】①在同一坐標(biāo)系中,的圖象關(guān)于軸對(duì)稱(chēng)

是奇函數(shù)

③與的圖象關(guān)于成中心對(duì)稱(chēng)

的最大值為,

以上四個(gè)判斷正確有____________________寫(xiě)上序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的圓心在直線(xiàn)上,且圓經(jīng)過(guò)點(diǎn)與點(diǎn).

(1)求圓的方程;

(2)過(guò)點(diǎn)作圓的切線(xiàn),求切線(xiàn)所在的直線(xiàn)的方程.

【答案】(1);(2).

【解析】試題分析:(1)求出線(xiàn)段的中點(diǎn),進(jìn)而得到線(xiàn)段的垂直平分線(xiàn)為,與聯(lián)立得交點(diǎn),∴.則圓的方程可求

(2)當(dāng)切線(xiàn)斜率不存在時(shí),可知切線(xiàn)方程為.

當(dāng)切線(xiàn)斜率存在時(shí),設(shè)切線(xiàn)方程為,由到此直線(xiàn)的距離為,解得,即可到切線(xiàn)所在直線(xiàn)的方程.

試題解析:((1)設(shè) 線(xiàn)段的中點(diǎn)為,∵,

∴線(xiàn)段的垂直平分線(xiàn)為,與聯(lián)立得交點(diǎn),

.

∴圓的方程為.

(2)當(dāng)切線(xiàn)斜率不存在時(shí),切線(xiàn)方程為.

當(dāng)切線(xiàn)斜率存在時(shí),設(shè)切線(xiàn)方程為,即

到此直線(xiàn)的距離為,解得,∴切線(xiàn)方程為.

故滿(mǎn)足條件的切線(xiàn)方程為.

【點(diǎn)睛本題考查圓的方程的求法,圓的切線(xiàn),中點(diǎn)弦等問(wèn)題,解題的關(guān)鍵是利用圓的特性,利用點(diǎn)到直線(xiàn)的距離公式求解.

型】解答
結(jié)束】
20

【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本(單位:萬(wàn)元)與產(chǎn)品銷(xiāo)售收入(單位:萬(wàn)元)存在較好的線(xiàn)性關(guān)系,下表記錄了最近5次產(chǎn)品的相關(guān)數(shù)據(jù).

(投入成本)

7

10

11

15

17

(銷(xiāo)售收入)

19

22

25

30

34

1)求關(guān)于的線(xiàn)性回歸方程;

2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬(wàn)元的毛利率更大還是投入成本24萬(wàn)元的毛利率更大()?

相關(guān)公式 , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次環(huán)保知識(shí)競(jìng)賽,共有900名學(xué)生參加了這次競(jìng)賽.為了了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿(mǎn)分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)下面尚未完成的頻率分布表和頻率分布直方圖(如圖),解答下列問(wèn)題:

分組

頻數(shù)

頻率

[50,60)

4

0.08

[60,70)

8

0.16

[70,80)

10

0.20

[80,90)

16

0.32

[90,100]

合計(jì)

(1)填充頻率分布表中的空格;

(2)不具體計(jì)算頻率/組距,補(bǔ)全頻率分布直方圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率。

(1)求橢圓方程;

(2)若直線(xiàn)與橢圓交于不同的兩點(diǎn),且線(xiàn)段的垂直平分線(xiàn)過(guò)定點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是(

A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,定義兩點(diǎn)A(xA , yA),B(xB , yB)間的“L﹣距離”為d(A﹣B)=|xA﹣xB|+|yA﹣yB|.現(xiàn)將邊長(zhǎng)為1的正三角形按如圖所示方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合,記邊AB所在的直線(xiàn)斜率為k(0≤k≤ ),則d(B﹣C)取得最大值時(shí),邊AB所在直線(xiàn)的斜率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, 是雙曲線(xiàn)的左,右焦點(diǎn),點(diǎn)在雙曲線(xiàn)上,且,則下列結(jié)論正確的是( )

A. ,則雙曲線(xiàn)離心率的取值范圍為

B. ,則雙曲線(xiàn)離心率的取值范圍為

C. 則雙曲線(xiàn)離心率的取值范圍為

D. ,則雙曲線(xiàn)離心率的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足0<an<1,且an+1+ =2an+ (n∈N*).
(1)證明:an+1<an;
(2)若a1= ,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 證明: <Sn ﹣2.

查看答案和解析>>

同步練習(xí)冊(cè)答案