14.已知0<x<$\frac{π}{2}$,且tan(x-$\frac{π}{4}$)=-$\frac{1}{7}$,則sinx+cosx=$\frac{7}{5}$.

分析 利用兩角差的正切公式求出tanx的值,又根據(jù)已知條件列出方程組,求解即可得到sinx,cosx的值,代入sinx+cosx計算得答案.

解答 解:∵tan(x-$\frac{π}{4}$)=-$\frac{1}{7}$,
∴$\frac{tanx-1}{1+tanx}$=$-\frac{1}{7}$,則tanx=$\frac{3}{4}$
又0<x<$\frac{π}{2}$,
∴$\left\{\begin{array}{l}{\frac{sinx}{cosx}=\frac{3}{4}}\\{si{n}^{2}x+co{s}^{2}x=1}\end{array}\right.$,解得sinx=$\frac{3}{5}$,cosx=$\frac{4}{5}$,
則sinx+cosx=$\frac{3}{5}+\frac{4}{5}=\frac{7}{5}$.
故答案為:$\frac{7}{5}$.

點評 本題考查了同角三角函數(shù)間的基本關系,熟練掌握公式及基本關系是解本題的關鍵,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2),有如下結論:
①f(x1+x2)=f(x1)f(x2),
②f(x1•x2)=f(x1)+f(x2),
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,
④$f({\frac{{{x_1}+{x_2}}}{2}})>\frac{{f({x_1})+f({x_2})}}{2}$,
當f(x)=lnx時,上述結論中正確結論的序號是②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若a>b>c,a+b+c=0,則下列各是正確的是( 。
A.ab>acB.ac>bcC.a|b|>|b|cD.ab>bc

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在平面之間坐標系中,角α的終邊經(jīng)過點P(1,2).
(1)求tanα的值;
(2)求$\frac{sinα+2cosα}{2sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在考試測評中,常用難度曲線圖來檢測題目的質量,一般來說,全卷得分高的學生,在某道題目上的答對率也應較高,如果是某次數(shù)學測試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標為分數(shù)段,縱坐標為該分數(shù)段的全體考生在第1、2問的平均難度,則下列說法正確的是(  )
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學生數(shù)學成績的好與壞
C.分數(shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標準差小于第2問的得分標準差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點
(Ⅰ)求證:平面PAB⊥平面CDE;
(Ⅱ)若直線PC與平面PAD所成角為45°,求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.關于函數(shù)f(x)=x3-3x2+6x的單調性是( 。
A.增函數(shù)B.先增后減C.先減后增D.減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.若存在常數(shù)k(k∈N*,k≥2)、q、d,使得無窮數(shù)列{an}滿足${a_{n+1}}=\left\{\begin{array}{l}{a_n}+d,\frac{n}{k}∉{N^*}\\ q{a_n},\frac{n}{k}∈{N^*}\end{array}\right.$則稱數(shù)列{an}為“段比差數(shù)列”,其中常數(shù)k、q、d分別叫做段長、段比、段差.設數(shù)列{bn}為“段比差數(shù)列”.
(1)若{bn}的首項、段長、段比、段差分別為1、3、q、3.
①當q=0時,求b2016;
②當q=1時,設{bn}的前3n項和為S3n,若不等式${S_{3n}}≤λ•{3^{n-1}}$對n∈N*恒成立,求實數(shù)λ的取值范圍;
(2)設{bn}為等比數(shù)列,且首項為b,試寫出所有滿足條件的{bn},并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\frac{1}{x-1}$.關于f(x)的性質,給出下面四個判斷:
①f(x)的定義域是R;
②f(x)的值域是R;
③f(x)是減函數(shù);
④f(x)的圖象是中心對稱圖形.
其中正確的判斷是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案