【題目】已知函數(shù)f(x)=ex(x2+x+a)在(0,f(0))處的切線與直線2x﹣y﹣3=0平行,其中a∈R.
(1)求a的值;
(2)求函數(shù)f(x)在區(qū)間[﹣2,2]上的最值.

【答案】
(1)解:f′(x)=ex(x2+3x+a+1),

故f′(0)=a+1,而切線的斜率是2,

故a+1=2,解得:a=1


(2)解:由(1)得f(x)=ex(x2+x+1),

f′(x)=ex(x+1)(x+2),

令f′(x)>0,解得:x>﹣1或x<﹣2,

令f′(x)<0,解得:﹣2<x<﹣1,

故函數(shù)f(x)在[﹣2,﹣1)遞減,在(﹣1,2]遞增,

而f(﹣2)= ,f(﹣1)= ,f(2)=7e2,

故f(x)在[﹣2,2]的最小值是 ,最大值是7e2


【解析】(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f′(0)=2,求出a的值即可;(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 的定義域?yàn)榧? ,函數(shù) 的定義域?yàn)榧? .
(1)若 ,求實(shí)數(shù) 的取值范圍;
(2)若 ,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1=an﹣2anan+1 , an≠0且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令 ,求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的a值為(
A.﹣3
B.
C.﹣
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了適應(yīng)市場需要,某地準(zhǔn)備建一個(gè)圓形生豬儲備基地(如右圖),它的附近有一條公路,從基地中心O處向東走1 km是儲備基地的邊界上的點(diǎn)A , 接著向東再走7 km到達(dá)公路上的點(diǎn)B;從基地中心O向正北走8 km到達(dá)公路的另一點(diǎn)C.現(xiàn)準(zhǔn)備在儲備基地的邊界上選一點(diǎn)D , 修建一條由D通往公路BC的專用線DE , 求DE的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 ,曲線C2的極坐標(biāo)方程為
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q曲線C2上一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】①“x∈R,x2﹣3x+3=0”的否定是真命題; ②“ ”是“2x2﹣5x﹣3<0”必要不充分條件;
③“若xy=0,則x,y中至少有一個(gè)為0”的否命題是真命題;
④曲線 與曲線 有相同的焦點(diǎn);
⑤過點(diǎn)(1,3)且與拋物線y2=4x相切的直線有且只有一條.
其中是真命題的有:(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x+cos2x.
(1)當(dāng)x∈[0, ]時(shí),求f(x)的取值范圍;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P為橢圓 =1上的動點(diǎn),EF為圓N:x2+(y﹣1)2=1的任一直徑,求 最大值和最小值是(
A.16,12﹣4
B.17,13﹣4
C.19,12﹣4
D.20,13﹣4

查看答案和解析>>

同步練習(xí)冊答案