分析 (1)利用等比數(shù)列的通項(xiàng)公式可得an,再利用對(duì)數(shù)的運(yùn)算性質(zhì)即可得出bn.
(2)利用“裂項(xiàng)求和”方法即可得出.
解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,由a1=2,a2=4(a3-a4)可得2q=4×(2q2-2q3),
解得$q=\frac{1}{2}$,∴${a_n}=2•{(\frac{1}{2})^{n-1}}={2^{2-n}}$,
∴bn=3-log2an=n+1(n∈N*).
(2)${c_n}=\frac{1}{{{b_n}•{b_{n+1}}}}=\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$,
∴${S_n}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{2}-\frac{1}{n+2}=\frac{n}{2n+4}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、對(duì)數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | 2$\sqrt{5}$ | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 2 | C. | $\sqrt{2}$-1 | D. | $\sqrt{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1994個(gè) | B. | 4464個(gè) | C. | 4536個(gè) | D. | 9000個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -i | B. | i | C. | $\frac{1}{2}$+$\frac{1}{2}$i | D. | $\frac{1}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{6}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $a<-1-\sqrt{3\;}或\;a>-1+\sqrt{3}$ | B. | a>1 | ||
C. | $a<3-\sqrt{3\;}或\;a>3+\sqrt{3}$ | D. | a<1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com