A. | (1,$\sqrt{2}$] | B. | (1,2] | C. | [$\sqrt{2}$,+∞) | D. | [2,+∞) |
分析 求出拋物線的焦點坐標,雙曲線的漸近線方程,由點到直線的距離公式,可得a,b的關系,再由離心率公式,計算即可得到.
解答 解:拋物線y2=8x的焦點為(2,0),
雙曲線E:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線為bx+ay=0,
則焦點到漸近線的距離d=$\frac{2b}{\sqrt{^{2}+{a}^{2}}}$≤$\sqrt{3}$,
即有2b≤$\sqrt{3}$c,
∴4b2≤3c2,
∴4(c2-a2)≤3c2,
∴e≤2,
∵e>1,
∴1<e≤2
故選:B.
點評 本題考查拋物線和雙曲線的方程和性質,考查漸近線方程的運用,考查點到直線的距離公式,考查離心率的求法,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 有極大值,無極小值 | B. | 有極小值,無極大值 | ||
C. | 既有極大值,又有極小值 | D. | 既無極大值,也無極小值 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | α<β | B. | α>β | C. | α+β<$\frac{3π}{2}$ | D. | α+β>$\frac{3π}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com