【題目】設(shè)函數(shù),.
(1)討論在上的單調(diào)性;
(2)當(dāng)時(shí),若存在正實(shí)數(shù),使得對,都有,求實(shí)數(shù)的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)對求導(dǎo),得到增區(qū)間,得到減區(qū)間,注意對討論. (2)要使得對,都有,只需研究,,使得對任意,都有,去掉絕對值號有,令,對求導(dǎo) ,分和兩種情況研究單調(diào)性和最小值,注意這一特殊函數(shù)值.
解:(1)由,得,
∵,∴,
當(dāng)時(shí),
由,得,即函數(shù)在上單調(diào)遞增,
由,得,即函數(shù)在上單調(diào)遞減;
當(dāng),在上恒成立,即函數(shù)在上單調(diào)遞增.
綜合以上有,
,即函數(shù)在上單調(diào)遞增.
,在上單調(diào)遞減,在上單調(diào)遞增.
(2)由(1)知,
當(dāng)時(shí),在上單調(diào)遞減,且
,使得對任意,都有,此時(shí),
則由,得.
設(shè),
令得,令得.
若,則,
∵,
∴在上單調(diào)遞減,注意到,
∴對任意,,與題設(shè)不符;
若,則,,
∴在上單調(diào)遞增,
∵,∴對任意,符合題意.
此時(shí)取,
可得對任意,都有.
綜上所述,的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,以為圓心過橢圓左頂點(diǎn)的圓與直線相切于,且滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),,問內(nèi)切圓面積是否有最大值?若有,求出最大值;若沒有,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為正方形邊上異于點(diǎn),的動點(diǎn),將沿翻折成,在翻折過程中,下列說法正確的是( )
A.存在點(diǎn)和某一翻折位置,使得
B.存在點(diǎn)和某一翻折位置,使得平面
C.存在點(diǎn)和某一翻折位置,使得直線與平面所成的角為45°
D.存在點(diǎn)和某一翻折位置,使得二面角的大小為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知為橢圓的上頂點(diǎn),P為橢圓E上異于上、下頂點(diǎn)的一個(gè)動點(diǎn).當(dāng)點(diǎn)P的橫坐標(biāo)為時(shí),.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)M為x軸的正半軸上的一個(gè)動點(diǎn).
①若點(diǎn)P在第一象限內(nèi),且以AP為直徑的圓恰好與x軸相切于點(diǎn)M,求AP的長.
②若,是否存在點(diǎn)N,滿足,且AN的中點(diǎn)恰好在橢圓E上?若存在,求點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國法定勞動年齡是周歲至退休年齡(退休年齡一般指男周歲,女干部身份周歲,女工人周歲).為更好了解我國勞動年齡人口變化情況,有關(guān)專家統(tǒng)計(jì)了年我國勞動年齡人口和周歲人口數(shù)量(含預(yù)測),得到下表:
其中年勞動年齡人口是億人,則下列結(jié)論不正確的是( )
A.年勞動年齡人口比年減少了萬人以上
B.這年周歲人口數(shù)的平均數(shù)是億
C.年,周歲人口數(shù)每年的減少率都小于同年勞動人口每年的減少率
D.年這年周歲人口數(shù)的方差小于這年勞動人口數(shù)的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評分標(biāo)準(zhǔn),先對本市的企業(yè)進(jìn)行評估,評出四個(gè)等級,并根據(jù)等級給予相應(yīng)的獎懲,如下表所示:
評估得分 | ||||
評定等級 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
獎勵(萬元) |
環(huán)保部門對企業(yè)評估完成后,隨機(jī)抽取了家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:
評估得分 | ||||||
頻率 |
其中、表示模糊不清的兩個(gè)數(shù)字,但知道樣本評估得分的平均數(shù)是.
(1)現(xiàn)從樣本外的數(shù)百個(gè)企業(yè)評估得分中隨機(jī)抽取個(gè),若以樣本中頻率為概率,求該家企業(yè)的獎勵不少于萬元的概率;
(2)現(xiàn)從樣本“不合格”、“合格”、“良好”三個(gè)等級中,按分層抽樣的方法抽取家企業(yè),再從這家企業(yè)隨機(jī)抽取家,求這兩家企業(yè)所獲獎勵之和不少于萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)x∈R,其中a,b∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)存在極值點(diǎn)x0,且f(x1)= f(x0),其中x1≠x0,求證:x1+2x0=3;
(Ⅲ)設(shè)a>0,函數(shù)g(x)= |f(x)|,求證:g(x)在區(qū)間[0,2]上的最大值不小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|x-2|.
(1)求f(x)的最小值m;
(2)若a,b,c均為正實(shí)數(shù),且滿足a+b+c=m,求證:++≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在進(jìn)入“互聯(lián)網(wǎng)+”時(shí)代,大學(xué)生小張自己開了一家玩具店,他通過“互聯(lián)網(wǎng)+”銷售某種玩具,經(jīng)過一段時(shí)間對一種玩具的銷售情況進(jìn)行統(tǒng)計(jì),得5數(shù)據(jù)如下:
假定玩具的銷售量(百個(gè))與玩具的銷售價(jià)價(jià)格(元)之間存在相關(guān)關(guān)系:
銷售量(百個(gè)) | 2 | 3 | 4 | 5 | 6 | 8 |
單個(gè)玩具的銷售價(jià)(元) | 5.5 | 4.3 | 3.9 | 3.8 | 3.7 | 3.6 |
根據(jù)以上數(shù)據(jù),小張分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲:,方程乙:.
(1)以為解釋變量,為預(yù)報(bào)變量,作出散點(diǎn)圖;
(2)分別計(jì)算模型甲與模型乙的殘差平方和及,并通過比較,大小,判斷哪個(gè)模型擬后效果更好.
(3)若—個(gè)玩具進(jìn)價(jià)0.5元,依據(jù)(2)中擬合效果好的模型判斷該玩具店有無虧損的可能?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com