【題目】如圖,在平面直角坐標系xOy中,已知為橢圓的上頂點,P為橢圓E上異于上、下頂點的一個動點.當點P的橫坐標為時,

1)求橢圓E的標準方程;

2)設(shè)Mx軸的正半軸上的一個動點.

①若點P在第一象限內(nèi),且以AP為直徑的圓恰好與x軸相切于點M,求AP的長.

②若,是否存在點N,滿足,且AN的中點恰好在橢圓E上?若存在,求點N的坐標;若不存在,請說明理由.

【答案】1;(2)①;②存在點滿足題意.

【解析】

1)根據(jù)題意可知,可求出P點坐標,代入方程求出即可;

2)①設(shè),則可表示出圓心坐標可設(shè)為,,根據(jù)圓的性質(zhì)及點P在橢圓上列出方程組求解即可;

②設(shè),根據(jù) AN的中點恰好在橢圓E上,且得到點坐標,即可求解.

1)因為是橢圓E的上頂點,所以

當點P的橫坐標為時,

設(shè),則,解得,

所以橢圓E的標準方程為

2)①設(shè),則以AP為直徑的圓的圓心坐標可設(shè)為

又因為,所以

因為,所以,

因為點P在橢圓E上,所以,

聯(lián)立解得(負值舍去),

所以

②設(shè),

因為,

所以

解得,

所以AN的中點坐標為

因為AN的中點在橢圓E上,

所以.(*

因為,所以

因為點P在橢圓E上,

所以,(**

聯(lián)立消去

又因為,所以

代入(*)式和(**)式得

消去m

又因為.所以,

代入(**)式和,

解得(負值舍去),

綜上,存在點,滿足

AN的中點恰好在橢圓E上.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,直線與拋物線交于,兩點.

1)若過點,證明:;

2)若,點在曲線上,的中點均在拋物線上,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓交于兩點,且(其中為坐標原點),若橢圓的離心率滿足,則橢圓長軸的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點為正方形上異于點,的動點,將沿翻折成,在翻折過程中,下列說法正確的是(

A.存在點和某一翻折位置,使得

B.存在點和某一翻折位置,使得平面

C.存在點和某一翻折位置,使得直線與平面所成的角為45°

D.存在點和某一翻折位置,使得二面角的大小為60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過拋物線的焦點且與軸垂直的直線與拋物線在第一象限交于點,的面積為,其中為坐標原點.

1)求拋物線的標準方程;

2)若,,為拋物線上的兩個不同的點,直線,的斜率分別為,,且,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蔬菜批發(fā)商經(jīng)銷某種新鮮蔬菜(以下簡稱A蔬菜),購入價為200/袋,并以300/袋的價格售出,若前8小時內(nèi)所購進的A蔬菜沒有售完,則批發(fā)商將沒售完的A蔬菜以150/袋的價格低價處理完畢(根據(jù)經(jīng)驗,2小時內(nèi)完全能夠把A蔬菜低價處理完,且當天不再購進).該蔬菜批發(fā)商根據(jù)往年的銷量,統(tǒng)計了100A蔬菜在每天的前8小時內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.

1)若某天該蔬菜批發(fā)商共購入6A蔬菜,有4A蔬菜在前8小時內(nèi)分別被4名顧客購買,剩下2袋在8小時后被另2名顧客購買.現(xiàn)從這6名顧客中隨機選2人進行服務(wù)回訪,則至少選中1人是以150/袋的價格購買的概率是多少?

2)若今年A蔬菜上市的100天內(nèi),該蔬菜批發(fā)商每天都購進A蔬菜5袋或者每天都購進A蔬菜6袋,估計這100天的平均利潤,以此作為決策依據(jù),該蔬菜批發(fā)商應選擇哪一種A蔬菜的進貨方案?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),.

1)討論上的單調(diào)性;

2)當時,若存在正實數(shù),使得對,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某總公司在A,B兩地分別有甲、乙兩個下屬公司同種新能源產(chǎn)品(這兩個公司每天都固定生產(chǎn)50件產(chǎn)品),所生產(chǎn)的產(chǎn)品均在本地銷售.產(chǎn)品進人市場之前需要對產(chǎn)品進行性能檢測,得分低于80分的定為次品,需要返廠再加工;得分不低于80分的定為正品,可以進人市場.檢測員統(tǒng)計了甲、乙兩個下屬公司100天的生產(chǎn)情況及每件產(chǎn)品盈利虧損情況,數(shù)據(jù)如表所示:

1

甲公司

得分

[50,60

[6070

[70,80

[80,90

[90,100]

件數(shù)

10

10

40

40

50

天數(shù)

10

10

10

10

80

2

甲公司

得分

[50,60

[6070

[70,80

[80,90

[90,100]

件數(shù)

10

5

40

45

50

天數(shù)

20

10

20

10

70

3

每件正品

每件次品

甲公司

2萬元

3萬元

乙公司

3萬元

3.5萬元

1)分別求甲、乙兩個公司這100天生產(chǎn)的產(chǎn)品的正品率(用百分數(shù)表示).

2)試問甲、乙兩個公司這100天生產(chǎn)的產(chǎn)品的總利潤哪個更大?說明理由.

3)若以甲公司這100天中每天產(chǎn)品利潤總和對應的頻率作為概率,從甲公司這100天隨機抽取1天,記這天產(chǎn)品利潤總和為X,求X的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人投籃的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲與乙的命中率之和.若甲與乙各投籃一次,每人投籃相互獨立,則他們都命中的概率為0.18.

1)求甲、乙、丙三人投籃的命中率;

2)現(xiàn)要求甲、乙、丙三人各投籃一次,假設(shè)每人投籃相互獨立,記三人命中總次數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案