11.等差數(shù)列{an}中,Sn為其前n項和,若a5=10,S5=30,則$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{2016}}$=$\frac{2016}{2017}$.

分析 設(shè)等差數(shù)列{an}的公差為d,由a5=10,S5=30,可得$\left\{\begin{array}{l}{{a}_{1}+4d=10}\\{5{a}_{1}+\frac{5×4}{2}d=30}\end{array}\right.$,解得a1,d.可得Sn,再利用“裂項求和”方法即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a5=10,S5=30,∴$\left\{\begin{array}{l}{{a}_{1}+4d=10}\\{5{a}_{1}+\frac{5×4}{2}d=30}\end{array}\right.$,
解得a1=d=2.
∴Sn=$2n+\frac{n(n-1)}{2}×2$=n(n+1),
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
則$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{2016}}$=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2016}-\frac{1}{2017})$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$.
故答案為:$\frac{2016}{2017}$.

點評 本題考查了等比數(shù)列與等差數(shù)列的通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.A,B,C三個學(xué)生參加了一次考試,A,B的得分均為70分,C的得分均為65分,已知命題p:若及格分低于70分,則A,B,C都沒有及格,在下列四個命題中,為p的逆否命題的是( 。
A.若及格分不低于70分,則A,B,C都及格
B.若A,B,C都及格,則及格分不低于70分
C.若A,B,C至少有1人及格,則及格分不低于70分
D.若A,B,C至少有1人及格,則  及格分不高70于分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[2]=2;[2.1]=2;[-2.2]=-3.函數(shù)y=[x]叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實踐中有廣泛的應(yīng)用.則[log31]+[log32]+[log33]+…+[log311]的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某公司對新招聘的員工張某進行綜合能力測試,共設(shè)置了A、B、C三個測試項目.假定張某通過項目A的概率為$\frac{1}{2}$,通過項目B、C的概率均為a(0<a<1),且這三個測試項目能否通過相互獨立.
(1)用隨機變量X表示張某在測試中通過的項目個數(shù),求X的概率分布和數(shù)學(xué)期望E(X)(用a表示);
(2)若張某通過一個項目的概率最大,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.由y=x,y=$\frac{1}{x}$,x=2及x軸所圍成的平面圖形的面積是( 。
A.ln2+1B.2-ln2C.ln2-$\frac{1}{2}$D.ln2+$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.4和10的等差中項是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,-4),則向量$\overrightarrow{a}$在向量$\overrightarrow$上的投影為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知U是全集,A、B是U的兩個子集,用交、并、補關(guān)系將圖中的陰影部分表示出來B∩(∁UA)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓的長軸長為6,離心率為$\frac{1}{3}$,F(xiàn)2為橢圓的右焦點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)點M在圓x2+y2=8上,且M在第一象限,過M作圓x2+y2=8的切線交橢圓于P,Q兩點,判斷△PF2Q的周長是否為定值并說明理由.

查看答案和解析>>

同步練習(xí)冊答案