分析 設AB=c、AC=b、BC=a,由三角形的面積公式求出 bc的值,由誘導公式和平方關系求出cos∠ADB、sin∠ADB,由兩角和的正弦公式求出sin∠ABD;在△ABD中由正弦定理和bc的值求出c2、b2,在△ABC中由余弦定理求出BC的長.
解答 解:如圖所示:設AB=c、AC=b、BC=a,
∵D是邊AC的中點,∴AD=DC=$\frac{1}{2}b$,
∵A=$\frac{π}{3}$,△ABC面積為3$\sqrt{3}$,∴$\frac{1}{2}bcsinA=3\sqrt{3}$,
則$\frac{1}{2}×\frac{\sqrt{3}}{2}bc=3\sqrt{3}$,得bc=12,
∵∠ADB+∠BDC=π,cos∠BDC=-$\frac{2\sqrt{7}}{7}$,∴cos∠ADB=$\frac{2\sqrt{7}}{7}$,
由∠ADB∈(0,π)得,sin∠ADB=$\sqrt{1-co{s}^{2}∠ADB}$=$\frac{\sqrt{21}}{7}$,
在△ABD中,sin∠ABD=sin(∠ADB+A)
=sin∠ADBcosA+cos∠ADBsinA
=$\frac{\sqrt{21}}{7}$×$\frac{1}{2}+$$\frac{2\sqrt{7}}{7}$×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{21}}{14}$,
在△ABD中,由正弦定理得$\frac{AB}{sin∠ADB}=\frac{AD}{sin∠ABD}$,
∴$\frac{c}{\frac{\sqrt{21}}{7}}$=$\frac{\frac{2}}{\frac{3\sqrt{21}}{14}}$,化簡得b=3c,
代入bc=12得,c2=4、b2=36,
在△ABC中,由余弦定理得,BC2=AB2+AC2-2•AB•AC•cosA
=c2+b2-bc=4+36-12=28,
∴BC═2$\sqrt{7}$,(9分),
故答案為:$\frac{3\sqrt{21}}{14}$;2$\sqrt{7}$.
點評 本題考查正弦定理、余弦定理,兩角和的正弦公式,以及三角形的面積公式,考查化簡、計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若T2n+1>0,則a1>0 | B. | 若T2n+1<0,則a1<0 | ||
C. | 若T3n+1<0,則a1>0 | D. | 若T4n+1<0,則a1<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2,3,4} | B. | {x|x>1} | C. | {x|x<5} | D. | (1,5) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[\frac{13}{e^3},\frac{7}{e^2}]$ | B. | $(\frac{13}{e^3},\frac{7}{e^2}]$ | C. | $[\frac{7}{e^2},\frac{3}{e}]$ | D. | $(\frac{7}{e^2},\frac{3}{e}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com