已知為橢圓,的左右焦點(diǎn),是坐標(biāo)原點(diǎn),過作垂直于軸的直線交橢圓于,設(shè) .
(1)證明: 成等比數(shù)列;
(2)若的坐標(biāo)為,求橢圓的方程;
(3)在(2)的橢圓中,過的直線與橢圓交于、兩點(diǎn),若,求直線的方程.
(1)詳見解析;(2);(3)
解析試題分析:(1)由條件知M點(diǎn)的坐標(biāo)為(c,y0),其中|y0|=d,知,d=b•=,由此能證明d,b,a成等比數(shù)列;
(2)由條件知c=,d=1,知b2=a?1,a2=b2+2,由此能求出橢圓方程;
(3)設(shè)點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)l⊥x軸時(shí),A(-,-1)、B(-,1),所以≠0. 設(shè)直線的方程為y=k(x+),代入橢圓方程得(1+2k2)x2+4k2x+4k2?4=0再由韋達(dá)定理能夠推導(dǎo)出直線的方程.
試題解析:(1)證明:由條件知M點(diǎn)的坐標(biāo)為,其中,
, ,即成等比數(shù)列. 3分
(2)由條件知,橢圓方程為 6分
(3)設(shè)點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)l⊥x軸時(shí),A(-,-1)、B(-,1),所以≠0. 設(shè)直線的方程為y=k(x+),代入橢圓方程得(1+2k2)x2+4k2x+4k2?4=0所以①由得
整理后把①式代入解得k=,
所以直線l的方程為.
考點(diǎn):數(shù)列與解析幾何的綜合.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)A,B分別是直線y=x和y=-x上的動點(diǎn),且|AB|=,設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)P滿足=+.
(1)求點(diǎn)P的軌跡方程;
(2)過點(diǎn)(,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點(diǎn)P的軌跡的相交弦分別為CD,EF,設(shè)CD,EF的弦中點(diǎn)分別為M,N,求證:直線MN恒過一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知拋物線方程為y2=4x,其焦點(diǎn)為F,準(zhǔn)線為l,A點(diǎn)為拋物線上異于頂點(diǎn)的一個(gè)動點(diǎn),射線HAE垂直于準(zhǔn)線l,垂足為H,C點(diǎn)在x軸正半軸上,且四邊形AHFC是平行四邊形,線段AF和AC的延長線分別交拋物線于點(diǎn)B和點(diǎn)D.
(1)證明:∠BAD=∠EAD;
(2)求△ABD面積的最小值,并寫出此時(shí)A點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)不與坐標(biāo)軸平行的直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,經(jīng)過點(diǎn)(0,)且斜率為k的直線l與橢圓+y2=1有兩個(gè)不同的交點(diǎn)P和Q.
(1)求k的取值范圍;
(2)設(shè)橢圓與x軸正半軸、y軸正半軸的交點(diǎn)分別為A,B,是否存在常數(shù)k,使得向量+與共線?如果存在,求k的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率為,一條準(zhǔn)線l:x=2.
(1)求橢圓C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),M是l上的點(diǎn),F為橢圓C的右焦點(diǎn),過點(diǎn)F作OM的垂線與以OM為直徑的圓D交于P,Q兩點(diǎn).
①若PQ=,求圓D的方程;
②若M是l上的動點(diǎn),求證點(diǎn)P在定圓上,并求該定圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)y在軸上,焦距為,且過點(diǎn)M。
(1)求橢圓C的方程;
(2)若過點(diǎn)的直線l交橢圓C于A、B兩點(diǎn),且N恰好為AB中點(diǎn),能否在橢圓C上找到點(diǎn)D,使△ABD的面積最大?若能,求出點(diǎn)D的坐標(biāo);若不能,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的離心率是,分別是橢圓的左、右兩個(gè)頂點(diǎn),點(diǎn)是橢圓的右焦點(diǎn)。點(diǎn)是軸上位于右側(cè)的一點(diǎn),且滿足.
(1)求橢圓的方程以及點(diǎn)的坐標(biāo);
(2)過點(diǎn)作軸的垂線,再作直線與橢圓有且僅有一個(gè)公共點(diǎn),直線交直線于點(diǎn).求證:以線段為直徑的圓恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,它的一個(gè)頂點(diǎn)為拋物線x2=4y的焦點(diǎn).
(1)求橢圓方程;
(2)若直線y=x-1與拋物線相切于點(diǎn)A,求以A為圓心且與拋物線的準(zhǔn)線相切的圓的方程;
(3)若斜率為1的直線交橢圓于M、N兩點(diǎn),求△OMN面積的最大值(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com