已知F1、F2是橢圓C:
x2
8
+
y2
4
=1的兩個焦點,P為橢圓C上的一點,如果△PF1F2是直角三角形,這樣的點P有( 。﹤.
A、8B、6C、4D、2
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出橢圓的a,b,c,再討論直角頂點的情況即有三種,分別考慮它們,即可得到答案.
解答: 解:橢圓C:
x2
8
+
y2
4
=1的a=2
2
,b=2,c=
a2-b2
=2,
由于△PF1F2是直角三角形,則若PF1⊥F1F2,則有兩個,
若PF2⊥F1F2,則有兩個,
若PF1⊥PF2,由于b=c,以F1F2為直徑的圓與橢圓交于兩點,
則有兩個,
共有6個.
故選B.
點評:本題考查橢圓的方程和性質(zhì),考查分類討論的思想方法,考查運算能力,屬于中檔題和易錯題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標準?用水量不超過a的部分按照平價收費,超過a的部分按照議價收費).為了較為合理地確定出這個標準,通過抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖,
(Ⅰ)由于某種原因頻率分布直方圖部分數(shù)據(jù)丟失,請在圖中將其補充完整;
(Ⅱ)用樣本估計總體,如果希望80%的居民每月的用水量不超出標準&則月均用水量的最低標準定為多少噸,并說明理由;
(Ⅲ)若將頻率視為概率,現(xiàn)從該市某大型生活社區(qū)隨機調(diào)查3位居民的月均用水量(看作有放回的抽樣),其中月均用水量不超過(Ⅱ)中最低標準的人數(shù)為x,求x的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程x2+y2+2x+2y-m=0,表示一個圓,則m的取值范圍( 。
A、m≥-2B、m≤-2
C、m<-2D、m>-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2014,則不等式f(2015)<f(a)的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A∈α,P∉α,
PA
=(-
3
2
1
2
,
2
),平面α的一個法向量
n
=(0,-
1
2
,-
2
),則直線PA與平面α所成的角為( 。
A、30°B、45°
C、60°D、150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=lgsinx+
1-2cosx
的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U=R,函數(shù)f(x)=
x-a
+lg(a+3-x)的定義域為集合A,集合B={x|
1
4
≤2x≤32}.
(1)若a=-3,求A∩B;
(2)若A⊆∁UB,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log3(1-x)+
1
x-1
的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x>
1
2
,則當x=
 
時,x+
4
2x-1
的最小值為
 

查看答案和解析>>

同步練習冊答案