考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)4S
n=a
n2+2a
n且a
n>0,當(dāng)n=1時(shí),
4S1=4a1=+2a1,解得a
1=2.當(dāng)n≥2時(shí),利用4a
n=4(S
n-S
n-1)可得(a
n+a
n-1)(a
n-a
n-1-2)=0,由a
n>0,可得a
n-a
n-1=2.利用等差數(shù)列的通項(xiàng)公式即可得出.又點(diǎn)(a
n,b
n)在函數(shù)f(x)=2
x的圖象上(其中n∈N
*),代入即可得出.
(2)c
n=a
n•sin
2(
)-b
n•cos
2(
)=2n•sin
2(
)-4
n•cos
2(
),可得:c
1=2,c
2=-4
2,c
3=6,c
4=-4
4,…,分奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別利用等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答:
解:(1)∵4S
n=a
n2+2a
n且a
n>0,∴當(dāng)n=1時(shí),
4S1=4a1=+2a1,解得a
1=2.
當(dāng)n≥2時(shí),4a
n=4(S
n-S
n-1)=a
n2+2a
n-
(+2an-1),化為(a
n+a
n-1)(a
n-a
n-1-2)=0,
∵a
n>0,∴a
n-a
n-1=2.
∴數(shù)列{a
n}是等差數(shù)列,∴a
n=2+2(n-1)=2n.
又點(diǎn)(a
n,b
n)在函數(shù)f(x)=2
x的圖象上(其中n∈N
*).
∴
bn=2an=4
n.
(2)c
n=a
n•sin
2(
)-b
n•cos
2(
)=2n•sin
2(
)-4
n•cos
2(
),
可得,c
1=2,c
2=-4
2,c
3=6,c
4=-4
4,
…,
∴T
2n=(c
1+c
3+…+c
2n-1)+(c
2+c
4+…+c
4)
=(2×1+2×3+…+2×(2n-1))+(-4
2-4
4-…-4
2n)
=
2×-
=2n
2-
(16n-1).
點(diǎn)評(píng):本題考查了遞推式的意義、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了分類(lèi)討論的思想方法,考查了推理能力和計(jì)算能力,屬于難題.