已知圓C1:x2+y2+D1x+8y-8=0,圓C2:x2+y2+D2x-4y-2=0.
(1)若D1=2,D2=-4,求圓C1與圓C2的公共弦所在的直線l1的方程;
(2)在(1)的條件下,已知P(-3,m)是直線l1上一點(diǎn),過點(diǎn)P分別作直線與圓C1、圓C2相切,切點(diǎn)為A、B,求證:|PA|=|PB|;
(3)將圓C1、圓C2的方程相減得一直線l2:(D1-D2)x+12y-6=0.Q是直線l2上,且在圓C1、圓C2外部的任意一點(diǎn).過點(diǎn)Q分別作直線QM、QN與圓C1、圓C2相切,切點(diǎn)為M、N,試探究|QM|與|QN|的關(guān)系,并說(shuō)明理由.
【答案】分析:(1)對(duì)兩圓的方程作差即可得出兩圓的公共弦所在的直線方程.
(2)求出兩個(gè)圓的圓心坐標(biāo)與半徑,求出兩個(gè)切線長(zhǎng)即可證明結(jié)果.
(3)求出兩個(gè)圓的圓心坐標(biāo)與半徑,利用切線長(zhǎng)與半徑的垂直關(guān)系,比較|QM|與|QN|的關(guān)系.
解答:解:(1)由題意,∵D1=2,D2=-4,
∴圓C1:x2+y2+2x+8y-8=0,圓C2:x2+y2-4x-4y-2=0相交,
∴兩圓的方程作差得6x+12y-6=0,
即公式弦所在直線方程為x+2y-1=0.
(2)P(-3,m)是直線l1上一點(diǎn),所以m=2
過點(diǎn)P分別作直線與圓C1、圓C2相切,切點(diǎn)為A、B,
圓C1的圓心坐標(biāo)(-1,-4),半徑為:5;
圓C2的圓心坐標(biāo)(2,2),半徑為:
所以PA2=(-1+3)2+(-4-2)2-25=15.
PB2=(2+3)2+(2-2)2-10=15.
所以|PA|=|PB|;
(3)圓C1x2+y2+D1x+8y-8=0,圓心坐標(biāo)(,-4),半徑為:
圓C2:x2+y2+D2x-4y-2=0,圓心坐標(biāo)(,2),半徑為:
直線l2:(D1-D2)x+12y-6=0.Q是直線l2上,設(shè)Q(),
|QM|2=與|QN|2=
|QM|2-|QN|2=,
當(dāng)時(shí),|QM|=|QN|,
當(dāng)時(shí),|QM|>|QN|,
當(dāng)時(shí),|QM|<|QN|.
點(diǎn)評(píng):本題考查圓的方程的綜合應(yīng)用與圓的位置關(guān)系,考查發(fā)現(xiàn)問題與解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州二模)已知圓C1:x2+y2=2和圓C2,直線l與C1切于點(diǎn)M(1,1),圓C2的圓心在射線2x-y=0(x≥0)上,且C2經(jīng)過坐標(biāo)原點(diǎn),如C2被l截得弦長(zhǎng)為4
3

(1)求直線l的方程;
(2)求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1x2+y2=2,直線l與圓C1相切于點(diǎn)A(1,1);圓C2的圓心在直線x+y=0上,且圓C2過坐標(biāo)原點(diǎn).
(1)求直線l的方程;
(2)若圓C2被直線l截得的弦長(zhǎng)為8,求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1x2+y2=10與圓C2x2+y2+2x+2y-14=0
(1)求證:圓C1與圓C2相交;
(2)求兩圓公共弦所在直線的方程;
(3)求經(jīng)過兩圓交點(diǎn),且圓心在直線x+y-6=0上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:x2+(y+5)2=5,設(shè)圓C2為圓C1關(guān)于直線l對(duì)稱的圓,則在x軸上是否存在點(diǎn)P,使得P到兩圓的切線長(zhǎng)之比為
2
?薦存在,求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧波模擬)如圖,已知圓C1x2+(y-1)2=4和拋物線C2:y=x2-1,過坐標(biāo)原點(diǎn)O的直線與C2相交于點(diǎn)A、B,定點(diǎn)M坐標(biāo)為(0,-1),直線MA,MB分別與C1相交于點(diǎn)D、E.
(1)求證:MA⊥MB.
(2)記△MAB,△MDE的面積分別為S1、S2,若
S1S2
,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案