19.?dāng)?shù)列{an}中a4=32,an+1-an=8,則a1=8.

分析 根據(jù)題意得到公差d=8,則根據(jù)等差數(shù)列的通項公式進行解答即可.

解答 解:∵an+1-an=8,
∴數(shù)列{an}是等差數(shù)列,且公差d=8,
∵a4=32,
∴32=a1+3×8,
解得a1=8.
故答案是:8.

點評 本題考查了等差數(shù)列的通項公式,根據(jù)已知條件推知數(shù)列{an}是等差數(shù)列,且公差d=8是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對于定義域和值域都為[0,1]的函數(shù)f(x),設(shè)f1(x)=f(x),${f_2}(x_0)=f({f_1}(x)),…,{f_n}(x)=f({f_{n-1}}(x))\;(n∈{N^*})$,若x0滿足fn(x0)=x0,則x0稱為f(x)的n階周期點.
(1)若f(x)=1-x(0≤x≤1),則f(x)的3價周期點的值為$\frac{1}{2}$;
(2)若$f(x)=\left\{{\begin{array}{l}{2x,x∈[{0,\frac{1}{2}}]}\\{2-2x,x∈({\frac{1}{2},1}]}\end{array}}\right.$,則f(x)的2階周期點的個數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了了解小學(xué)生的體能情況,抽取了某校一個年級的部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得的數(shù)據(jù)整理后,畫頻率分布直方圖.已知圖中橫軸從左向右的分組為[50,75)、[75,100)、[100,125)、[125,150],縱軸前3個對應(yīng)值分別為0.004、0.01、0.02,因失誤第4個對應(yīng)值丟失.
(Ⅰ) 已知第1小組頻數(shù)為10,求參加這次測試的人數(shù)?
(Ⅱ) 求第4小組在y軸上的對應(yīng)值;
(Ⅲ) 若次數(shù)在75次以上 ( 含75次 ) 為達標,試估計該年級跳繩測試達標率是多少?
(Ⅳ) 試估計這些數(shù)據(jù)的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知sin$\frac{x}{2}$-2cos$\frac{x}{2}$=0.
(1)求tanx的值;
(2)求$\frac{1+cos2x+sin2x}{{sin(x+\frac{π}{4})sinx}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}的各項均為正數(shù),且a2=4,a3+a4=24.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log22n,求數(shù)列{an+bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若同時滿足條件:
①對于任意的實數(shù)x,f(x)和g(x)的函數(shù)值至少有一個小于0;
②在區(qū)間(-∞,-4)內(nèi)存在實數(shù)x,使得f(x)g(x)<0成立;
則實數(shù)m的取值范圍是(-4,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}為等差數(shù)列,且a1=-1,a4=8.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線x2-$\frac{y^2}{2}$=1的左、右焦點分別為F1,F(xiàn)2,點P在直線l:$\sqrt{3}$x-2y+6=0上,當(dāng)∠F1PF2取最大值時,$\frac{{|{P{F_1}}|}}{{|{P{F_2}}|}}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知圓M:x2+y2-2mx+4y+m2-1=0與圓N:x2+y2+2x+2y-2=0相交于A,B兩點,且這兩點平分圓N的圓周,則圓M的圓心坐標為( 。
A.(1,-2)B.(-1,2)C.(-1,-2)D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案