11.已知數(shù)列{an}為等差數(shù)列,且a1=-1,a4=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

分析 (1)由等差數(shù)列通項(xiàng)公式求出公差,由此能求出an
(2)由a1=-1,d=3,利用等差數(shù)列前n項(xiàng)和公式能求出結(jié)果.

解答 (本小題滿分10分)
解:(1)∵數(shù)列{an}為等差數(shù)列,且a1=-1,a4=8,
∴a4=-1+3d=8,解得d=3,
∴an=-1+(n-1)×3=3n-4.
∴an=3n-4.
(2)∵a1=-1,d=3,
∴${S}_{n}=n{a}_{1}+\frac{n(n-1)}{2}d$
=-n+$\frac{3}{2}n(n-1)$=$\frac{3{n}^{2}-5n}{2}$.

點(diǎn)評 本題考查等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=x2+lnx-2mx在定義域內(nèi)是增函數(shù),則實(shí)數(shù)m的取值范圍是[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)求函數(shù)y=$\sqrt{sinx}$+$\sqrt{\frac{1}{2}-cosx}$的定義域.
(2)求函數(shù)y=cos2x-sinx,x∈[-$\frac{π}{4}$,$\frac{π}{4}}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.?dāng)?shù)列{an}中a4=32,an+1-an=8,則a1=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}-1\;,\;x≤0}\\{-{x^2}+x\;,\;x>0}\end{array}}$,則函數(shù)g(x)=f(logax)(其中0<a<1)的單調(diào)遞減區(qū)間是( 。
A.(0,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.[$\sqrt{a}$,1)D.(0,$\sqrt{a}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出下列結(jié)論:
①(cos x)′=sin x;
②(sin$\frac{π}{6}$)′=cos$\frac{π}{6}$;
③若y=$\frac{1}{{x}^{2}}$,則y′=-$\frac{1}{x}$;
其中正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.化簡下列各式:
(Ⅰ)$\overrightarrow{MB}$+$\overrightarrow{AC}$+$\overrightarrow{CM}$;
(Ⅱ)$\overrightarrow{OP}$-$\overrightarrow{QP}$+$\overrightarrow{PS}$+$\overrightarrow{SP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平面幾何里有射影定理:設(shè)三角形ABC的兩邊AB⊥AC,D是A點(diǎn)在BC上的射影,則AB2=BD•BC.拓展到空間,在四面體A-BCD中,AD⊥面ABC,點(diǎn)O是A在面BCD內(nèi)的射影,且O在△BCD內(nèi),類比平面三角形射影定理,得出正確的結(jié)論是(  )
A.S△ABC2=S△BCO•S△BCDB.S△ABD2=S△BOD•S△BOC
C.S△ADC2=S△DOC•S△BOCD.S△BDC2=S△ABD•S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)曲線f(x)=exsinx在(0,0)處的切線與直線x+my+l=0平行,則m=-1.

查看答案和解析>>

同步練習(xí)冊答案