在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)寫出直線的普通方程與圓的直角坐標(biāo)方程;
(2)由直線上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值.
(1),曲線C:(2).
【解析】
試題分析:先將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,再把直線上的點(diǎn)的坐標(biāo)(含參數(shù))代入,
化為求函數(shù)的最值問題,也可將直線的參數(shù)方程化為普通方程,
根據(jù)勾股定理轉(zhuǎn)化為求圓心到直線上最小值的問題.
試題解析:(1),曲線C: 4分
(2)因?yàn)閳A的極坐標(biāo)方程為,所以,
所以圓的直角坐標(biāo)方程為,圓心為,半徑為1, 6分
因?yàn)橹本的參數(shù)方程為(為參數(shù)),
所以直線上的點(diǎn)向圓C引切線長(zhǎng)是
,
所以直線上的點(diǎn)向圓C引的切線長(zhǎng)的最小值是. 10分
考點(diǎn):參數(shù)方程與極坐標(biāo),直線與圓的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練六(解析版) 題型:選擇題
設(shè)m,n∈R,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是( )
A.[1-,1+]
B.(-∞,1-]∪[1+,+∞)
C.[2-2,2+2]
D.(-∞,2-2]∪[2+2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練三(解析版) 題型:填空題
若執(zhí)行如圖所示的程序框圖,輸入x1=1,x2=2,x3=3,=2,則輸出的數(shù)等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練一(解析版) 題型:選擇題
已知橢圓=1 (a>b>0),A(2,0)為長(zhǎng)軸的一個(gè)端點(diǎn),弦BC過橢圓的中心O,且·=0,|-|=2|-|,則其焦距為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練一(解析版) 題型:選擇題
公比為的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a3a11=16,則log2a16=( )
A.4 B.5 C.6 D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
甲、乙、丙、丁4名同學(xué)被隨機(jī)地分到三個(gè)社區(qū)參加社會(huì)實(shí)踐,要求每個(gè)社區(qū)至少有一名同學(xué).
(1)求甲、乙兩人都被分到社區(qū)的概率;
(2)求甲、乙兩人不在同一個(gè)社區(qū)的概率;
(3)設(shè)隨機(jī)變量為四名同學(xué)中到社區(qū)的人數(shù),求的分布列和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
若圓C:關(guān)于直線對(duì)稱,則由點(diǎn)向圓所作的切線長(zhǎng)的最小值是( )
A. 2 B. 4 C. 3 D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AC=BC,點(diǎn)D是AB的中點(diǎn).
(1)求證:BC1∥平面CA1D;
(2)求證:平面CA1D⊥平面AA1B1B;
(3)若底面ABC為邊長(zhǎng)為2的正三角形,BB1=求三棱錐B1-A1DC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省高三十三校第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
P是橢圓上一定點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),若∠PF1 F2=60°,∠PF2F1=30°,則橢圓的離心率為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com