已知正方形的四個頂點分別為O(0,0),A(1,0),B(1,1),C(0,1),點D,E分別在線段OC,AB上運動,且OD=BE,設(shè)AD與OE交于點G,則點G的軌跡方程是( )
A.y=x(1-x)(0≤x≤1)
B.x=y(1-y)(0≤y≤1)
C.y=x2(0≤x≤1)
D.y=1-x2(0≤x≤1)
科目:高中數(shù)學 來源: 題型:
給出以下四個命題,其中真命題有
①如果一條直線和一個平面平行,經(jīng)過這條直線的一個平面和這個平面相交,那么這條直線和交線平行;
②如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面;
③如果兩條直線都平行于一個平面,那么這兩條直線互相平行;
④如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓C1:+=1(a>b>0)與圓C2:x2+y2=b2,若在橢圓C1上存在點P,使得由點P所作的圓C2的兩條切線互相垂直,則橢圓C1的離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
在平面直角坐標系xOy中,已知橢圓C:+=1(a>b>0)過點P(2,1),且離心率e=.
(1)求橢圓C的方程;
(2)直線l的斜率為,直線l與橢圓C交于A,B兩點.求△PAB的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)F1,F2為橢圓C1:+=1(a1>b1>0)與雙曲線C2的公共的左、右焦點,它們在第一象限內(nèi)交于點M,△MF1F2是以線段MF1為底邊的等腰三角形,且|MF1|=2.若橢圓C1的離心率e∈,則雙曲線C2的離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)拋物線C:y2=2px(p>0),A為拋物線上一點(A不同于原點O),過焦點F作直線平行于OA,交拋物線C于P,Q兩點.若過焦點F且垂直于x軸的直線交直線OA于B,則|FP|·|FQ|-|OA|·|OB|=________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)數(shù)列的前項和為,且,.
(Ⅰ)求;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)若數(shù)列滿足:,試證明:當時,必有
①; ②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com