分析 ①利用命題的否定即可判斷出正誤;
②利用充分必要條件定義即可判斷出;
③利用互為逆否命題之間的等價(jià)關(guān)系即可判斷出正誤;
④由指數(shù)函數(shù)的單調(diào)性加以判斷.
解答 解:①命題p:?x∈R,使得x2+x-1<0,則¬p:?x∈R,均有x2+x-1≥0,故①錯(cuò)誤;
②∵p是q的必要不充分條件,∴q⇒p,但p不能推q,則¬p⇒¬q,但¬q不能推¬p,
∴¬p是¬q的充分不必要條件,故②正確;
③命題“若x=y,則sinx=siny”是真命題,因此其逆否命題也為真命題,故③正確;
④若a>b,則由指數(shù)函數(shù)的單調(diào)性可得2a>2b,故④正確.
綜上可得:正確命題的序號(hào)是②③④.
故答案為:②③④.
點(diǎn)評(píng) 本題考查了簡易邏輯的判定、命題的否定及充分必要條件的判定方法,考查了推理能力,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)y=f(x)為R上可導(dǎo)函數(shù),則f'(x0)=0是x0為函數(shù)f(x)極值點(diǎn)的充要條件 | |
B. | 命題“$?{x_0}∈R,{x_0}^2+{x_0}-1<0$”的否定是“?x∈R,x2+x-1>0” | |
C. | “$φ=kπ+\frac{π}{2}(k∈Z)$”是“函數(shù)f(x)=sin(ωx+φ)是偶函數(shù)”的充要條件 | |
D. | 命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(0,2) | B. | (-2,0)∪(0,2) | C. | (-2,0)∪(2,+∞) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{16}$ | B. | $\frac{3}{16}$ | C. | -$\frac{1}{16}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{3}{2},4}]$ | B. | $[{2,\frac{9}{2}}]$ | C. | [-11,-1] | D. | [-3,7] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com