化簡:
sin(π-α)cos(2π-α)tan(-α+π) |
cot(-α-π)sin(-π+α) |
.
考點:運用誘導(dǎo)公式化簡求值
專題:計算題,三角函數(shù)的求值
分析:運用誘導(dǎo)公式即可化簡求值.
解答:
解:
sin(π-α)cos(2π-α)tan(-α+π) |
cot(-α-π)sin(-π+α) |
=
sinαcosαcotα |
(-cotα)(-sinα) |
=cosα.
點評:本題主要考察了運用誘導(dǎo)公式化簡求值,比較簡單,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=(a2-a+1)xa+2為冪函數(shù),且為奇函數(shù),設(shè)函數(shù)g(x)=f(x)+x.
(1)求實數(shù)a的值及函數(shù)g(x)的零點;
(2)是否存在自然數(shù)n,使g(n)=900?若存在,請求出n的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)f(x)=[x]的函數(shù)值表示不超過x的最大整數(shù),例如,[-3.5]=-4,[2.1]=2,當x∈(-2.5,3]時.
①寫出函數(shù)f(x)的解析式;②作出函數(shù)f(x)的圖象;
③若直線y=mx與函數(shù)f(x)=[x],x∈(-2.5,3]的圖象有且僅有2個公共點,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
從6名醫(yī)師和3名護士中選出3名醫(yī)師和2名護士分別參與5個不同醫(yī)療隊,不同的分配方法的種數(shù)為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知拋物線C:y2=2px(p>0)上的點M(1,m)到其焦點F的距離為2
(Ⅰ)求C的方程;
(Ⅱ)過點F的直線l與C交于A、B兩點,O為坐標原點,以O(shè)A,OB為邊,平行四邊形OAPB,求點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=
+a是奇函數(shù).
(1)求實數(shù)a和f(-2)的值;
(2)判斷f(x)在其定義域上的單調(diào)性,并用函數(shù)單調(diào)性的定義加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知二次函數(shù)f(x)=ax(x-1)(a≠0)且其圖象的頂點恰好在函數(shù)y=log2x的圖象上.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)h(x)=|f(x)|+m恰有兩個零點,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知△ABC中,AB=AC=BC=6,平面內(nèi)一點M滿足
=
-
,則
•
等于( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
當0<a<1時滿足|log
a(x+1)>|log
a(x-1)|的x的取值范圍是
.
查看答案和解析>>