已知y=f(x)的定義域?yàn)镽,且恒有等式2f(x)+f(-x)+2x=0對任意的實(shí)數(shù)x成立.
(Ⅰ)試求f(x)的解析式;
(Ⅱ)討論f(x)在R上的單調(diào)性,并用單調(diào)性定義予以證明.

解:(Ⅰ)∵2f(x)+f(-x)+2x=0 ①對任意的實(shí)數(shù)x成立;
∴2f(-x)+f(x)+2-x=0 ②;
①×2-②得:3f(x)+2×2x-2-x=0?f(x)=(2-x-2×2x);
(Ⅱ)函數(shù)在實(shí)數(shù)集上遞減.
證明:任取a<b,
則f(a)-f(b)=(2-a-2×2a)-(2-b-2×2b
=[(2-a-2-b)-2×(2a-2b)]
=[(-)-2×(2a-2b)]
=(2b-2a)(+2);
∵a<b;
∴2b-2a>0,2a+b>0;
∴(2b-2a)(+2)>0;
∴f(a)-f(b)>0?f(a)>f(b).
∴函數(shù)f(x)在R上遞減.
分析:(Ⅰ)直接由2f(x)+f(-x)+2x=0得到2f(-x)+f(x)+2-x=0;兩個(gè)方程聯(lián)立即可求出求f(x)的解析式;
(Ⅱ)直接根據(jù)單調(diào)性的證明過程(取值,作差,變形,定號)證明即可.(注意整理過程不能出錯(cuò))
點(diǎn)評:本題考點(diǎn)是抽象函數(shù)及其應(yīng)用,考查用賦值法求函數(shù)值,以及靈活利用所給的恒等式證明函數(shù)的單調(diào)性,此類題要求答題者有較高的數(shù)學(xué)思辨能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:射線OA為y=kx(k>0,x>0),射線OB為y=-kx(x>0),動(dòng)點(diǎn)P(x,y)在∠AOx的內(nèi)部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.
(1)當(dāng)k為定值時(shí),動(dòng)點(diǎn)P的縱坐標(biāo)y是橫坐標(biāo)x的函數(shù),求這個(gè)函數(shù)y=f(x)的解析式;
(2)根據(jù)k的取值范圍,確定y=f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(2,4),對于偶函數(shù)y=g(x)(x∈R),當(dāng)x≥0時(shí),g(x)=f(x)-2x.
(1)求函數(shù)y=f(x)的解析式;
(2)求當(dāng)x<0時(shí),函數(shù)y=g(x)的解析式,并在給  定坐標(biāo)系下,畫出函數(shù)y=g(x)的圖象;
(3)寫出函數(shù)y=|g(x)|的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+
5x
的定義域?yàn)椋?,+∞).設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=2x和y軸的垂線,垂足分別為M、N.
(1)|PM|•|PN|是否為定值?若是,求出該定值;若不是,說明理由;
(2)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
(。┳C明:a=b;
(ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案