【題目】設(shè)數(shù)列{an}的前n項和為Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)Tn= ,求證:Tn< .
【答案】
(1)解:數(shù)列{an}的前n項和為Sn,且2Sn=(n+2)an﹣1(n∈N*).
令n=1時,2S1=3a1﹣1,解得:a1=1
(2)解:由于:2Sn=(n+2)an﹣1①
所以:2Sn+1=(n+3)an+1﹣1②
②﹣①得:2an+1=(n+3)an+1﹣(n+2)an,
整理得: ,則 ,即 .
∵ ,
∴ ,…, ,
利用疊乘法把上面的(n﹣1)個式子相乘得: = ,
∴ ,當(dāng)n=1時,a1=1符合上式,
∴數(shù)列的通項公式是 .
(3)證明:∵ ,∴ ,
∴ =2( ),
∴Tn=
=2( …+ )
=2( )<2( )= .
故Tn< .
【解析】(1)令n=1可得a1的值;(2)由已知條件可得2Sn+1=(n+3)an+1﹣1,作差可得=,利用疊乘法可得數(shù)列{an}的通項公式;(3)利用裂項法可得Tn,進而可證Tn<.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的通項公式的相關(guān)知識,掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合M={x|x<2},集合N={x|0<x<1},則下列關(guān)系中正確的是( )
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝批發(fā)市場1-5月份的服裝銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷售量 (萬件) | 3 | 6 | 4 | 7 | 8 |
利潤 (萬元) | 19 | 34 | 26 | 41 | 46 |
(1)從這五個月的利潤中任選2個,分別記為, ,求事件“, 均不小于30”的概率;
(2)已知銷售量與利潤大致滿足線性相關(guān)關(guān)系,請根據(jù)前4個月的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的利潤的估計數(shù)據(jù)與真實數(shù)據(jù)的誤差不超過2萬元,則認為得到的利潤的估計數(shù)據(jù)是理想的.請用表格中第5個月的數(shù)據(jù)檢驗由(2)中回歸方程所得的第5個月的利潤的估計數(shù)據(jù)是否理想.參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|,a∈R.
(1)當(dāng)a=1時,解不等式f(x)≤5;
(2)若f(x)≥2對于x∈R恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,,設(shè)函數(shù).
(1)若函數(shù)的圖象關(guān)于直線對稱,且時,求函數(shù)的單調(diào)增區(qū)間;
(2)在(1)的條件下,當(dāng)時,函數(shù)有且只有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益與投入(單位:萬元)滿足,乙城市收益與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)當(dāng)甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷并證明函數(shù)在上的單調(diào)性;
(3)是否存在這樣的負實數(shù),使對一切恒成立,若存在,試求出取值的集合;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),數(shù)列{ }的前n項和為Sn , 則S1S2S3…S10= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機廠商推出一次智能手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調(diào)查,對手機進行打分,打分的頻數(shù)分布表如下:
女性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的方差大小(不計算具體值,給出結(jié)論即可);
(2)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意取3名用戶,求3名用戶評分小于90分的人數(shù)的分布列和期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com