A. | 相交 | B. | 外切 | C. | 內(nèi)切 | D. | 外離 |
分析 把第二個(gè)圓的方程化為標(biāo)準(zhǔn)方程,找出圓心A的坐標(biāo)和半徑r,再由第一個(gè)圓的方程找出圓心B的坐標(biāo)和半徑R,利用兩點(diǎn)間的距離公式求出兩圓心間的距離d,發(fā)現(xiàn)d=R+r,從而判斷出兩圓位置關(guān)系是外切.
解答 解:把圓x2+y2-10x+16=0化為標(biāo)準(zhǔn)方程得:(x-5)2+y2=9,
∴圓心A的坐標(biāo)為(5,0),半徑r=3,
由圓x2+y2=4,得到圓心B坐標(biāo)為(0,0),半徑R=2,
兩圓心間的距離d=|AB|=5,
∵2+3=5,即d=R+r,
則兩圓的位置關(guān)系是外切.
故選:B.
點(diǎn)評(píng) 此題考查了圓的標(biāo)準(zhǔn)方程,兩點(diǎn)間的距離公式,以及圓與圓位置關(guān)系的判斷,圓與圓位置關(guān)系的判斷方法為:當(dāng)0≤d<R-r時(shí),兩圓內(nèi)含;當(dāng)d=R-r時(shí),兩圓內(nèi)切;當(dāng)R-r<d<R+r時(shí),兩圓相交;當(dāng)d=R+r時(shí),兩圓外切;當(dāng)d>R+r時(shí),兩圓相離(d表示兩圓心間的距離,R及r分別表示兩圓的半徑).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 84 | C. | 504 | D. | 69 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{1}{2},3}]$ | B. | $[{\frac{1}{2},3})$ | C. | (-∞,3] | D. | [-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com