16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-3y+6≥0}\\{x≤0}\\{y≤0}\end{array}\right.$,那么z=y-x的最大值是( 。
A.1B.2C.3D.5

分析 畫出可行域,將目標(biāo)函數(shù)變形畫出相應(yīng)的直線,將直線平移至A(-3,0)時(shí)縱截距最大,z最大.

解答 解:畫出實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-3y+6≥0}\\{x≤0}\\{y≤0}\end{array}\right.$的可行域如圖:
將z=y-x變形為y=x+z作直線y=x將其平移至A(-3,0)時(shí),直線的縱截距最大,最大為:3.
故選:C.

點(diǎn)評(píng) 利用線性規(guī)劃求函數(shù)的最值時(shí),關(guān)鍵是將目標(biāo)函數(shù)賦予幾何意義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=alnx-x+$\frac{1}{x}$,在區(qū)間(0,$\frac{1}{2}$]內(nèi)任取兩個(gè)不相等的實(shí)數(shù)m,n,若不等式mf(m)+nf(n)<nf(m)+mf(n)恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,2]B.(-∞,$\frac{5}{2}$]C.[2,$\frac{5}{2}$]D.[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=(x-x3)e|x|的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給定y與x的一組樣本數(shù)據(jù),求得相關(guān)系數(shù)r=-0.990,則(  )
A.y與x負(fù)線性相關(guān)B.y與x正線性相關(guān)
C.y與x的線性相關(guān)性很強(qiáng)D.y與x的相關(guān)性很強(qiáng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC的三內(nèi)角A、B、C滿足sin2A+sin2B=2sin2C,那么cosC的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2sinxsin($\frac{π}{6}$-x).
(Ⅰ)求f($\frac{π}{3}$)及f(x)的最小正周期T的值;
(Ⅱ)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓(x-2)2+y2=4的圓心為C,過原點(diǎn)O的直線l與圓交于A,B兩點(diǎn).若△ABC的面積為1,則滿足條件的直線l有( 。
A.2條B.4條C.8條D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知定義域?yàn)閇-1,0)∪(0,1]的奇函數(shù)f(x),當(dāng)x∈(0,1]時(shí),f(x)=$\sqrt{1-{x}^{2}}$,則不等式f(x)<f(-x)+x的解集為($\frac{\sqrt{3}}{2}$,1]∪[-1,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=6,BC=8,若此三棱柱外接球的半徑為13,則該三棱柱的表面積為( 。
A.624B.576C.672D.720

查看答案和解析>>

同步練習(xí)冊(cè)答案